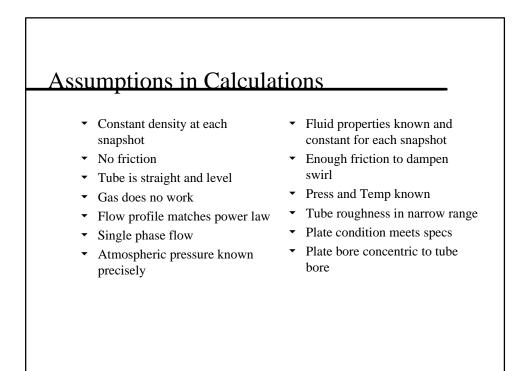
In-Situ Testing of Gas Orifice Meters


By: Ron Beaty, PE David Simpson, MSME both of Amoco Production Co.

Overview

- Why do we do *in-situ* testing
- ▼ Test Equipment
- Design Considerations
- ▼ Summary

Elements of a Differential Producer

- Primary Element--mostly steel; subjected to pressure, temperature, and flow velocity, but no electronics
- Sensing Element--electronics and exotic metals; subjected to pressure and temperature, but not flow; generates electronic signals or pen movements.
- Recording Element--Electronics or pen & ink; only sees electronic signals or pen movements
- Differential Producers are Inferential Devices
 - Assuming all conditions match reference conditions you can use Bernoulli's Equation to infer a flow rate from a differential pressure across a known restriction

Measurement System Accuracy

- Each element of a measurement system is:
 - manufactured to close tolerances
 - inspected by the manufacturer and purchaser
 - installed to precise specifications
- After all that, what can still be wrong?

What can be wrong with a new installation?

- ▼ Flow profile
- Backwards plate
- Beta Ratio
- Incorrect station parameters
- Non-rigid mounting

Flow Profile

- Problem
 - 25% of flow not in center 20% of pipe
 - Error can be low by 5% or more
- How to prevent it
 - Upstream piping
 - Flow Conditioners and/or Straightening vanes
- How to detect it
 - In Situ Testing

Backwards Plate

- ▼ Problem
 - Leading edge shaped like a venturi
 - Reading can be as much as 26% low
- How to prevent it
 - Attention to details
- How to detect it
 - In Situ testing

Beta Ratio

- Problem:
 - Uncertainty in gas measurement is controlled to a large extent by beta ratio
 - » Less than 0.3, uncertainty is a function of edge sharpness and concentricity
 - » Greater than about 0.62, it increases very quickly
 - Combined error can be 7%
- How do you prevent it
 - Proper station design
- How do you detect how "uncertainty" equates to "error"
 - In Situ Testing

Incorrect station parameters

- Problem
 - Any of the parameters from gas analysis to Tube ID will affect the conversion of dP, P, and T to flow rate
 - Combined error can be over 10%
- What can you do to prevent errors
 - Double check original input (two people)
- What can you do to detect errors
 - Verify all parameters each calibration
 - In Situ Testing

Non-Rigid Mounting

- Problem
 - The gas does work (reducing dP)
 - up to 15% error
- How to prevent
 - Independent braces
 - Use hold-down bolts
- How to detect
 - Inspection after installation
 - In-Situ testing

Installation Verification

- To insure that a new station meets its potential:
 - Install all the parts at their final location
 - Use "normal" gas at "normal" temperature and pressure
 - Design a test manifold that ensures that all gas goes through the test skid after the new station
 - Use a certified test skid

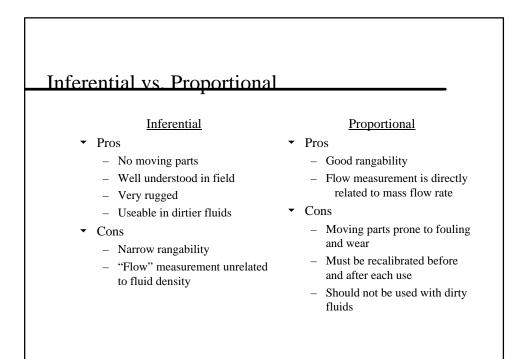
When to Test

- As part of station commissioning process
- Regularly on very large volume stations
- Regularly on particularly erosive/corrosive or dirty applications
- When routine plate inspections point to a problem

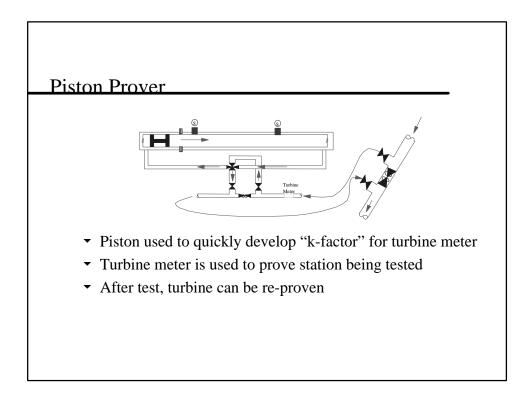
Test Equipment

- Uncertainty
- Calibrated Differential Producer
- Proportional devices with provers
 - Turbine meters
 - Vortex-shedding meters
- Inferential vs. Proportional devices
- Calibration methods

Uncertainty


- Uncertainty means "you don't know"
- No conclusions can be drawn from data beyond the uncertainty range, for example:
 - $-\,$ If a calibration device is stated to be $\pm 0.5\%$
 - Your tested device is off by 0.6%
 - Actual results are 0.1-1.1% and the meter has a bias high
- Consequently:
 - a calibration device can only certify a calibrated device to within twice its uncertainty (i.e., a 0.25% device must be used to calibrate a 0.5% device)
 - Midpoint of a confidence range must fall within the dead-zone around zero (i.e., the center of a 90% confidence range from a 0.5% skid must be in the range -0.5-0.5%)

- As long as:
 - The test manifold has positive isolation between inlet and outlet
 - Sensing elements on test skid are calibrated before every test
 - Orifice plates on test skid are inspected before and after every test
 - Tube on test skid is inspected quarterly
 - Recording elements are verified against a calculation standard frequently
 - The skid is certified against a primary standard annually to be within $\pm 0.5\%$
- A properly designed Differential Producer Skid can be used to certify a station is ±1.0%


Proportional Devices

- All have some moving part that is proportional to mass flow rate (motion can be gross like a turbine rotor or microscopic like the vibration frequency of a vortex)
- They are all prone to:
 - Foul in dirty fluid (20 mils of paraffin on a turbine blade caused the reading to be 2% low in one test against a primary standard)
 - Have bearing or vibration-sensor wear that is not obvious on recording element
- A Proportional Skid must be calibrated against a primary standard before and after each station test

Calibration Methods

- Piston Prover
- Sonic nozzle
- Primary standards not discussed in this paper:
 - Weigh tanks
 - High pressure Bell Prover

Piston Prover Design Considerations

- Piston run times related to flow by:
 - Precise displacement volume
 - Exact duration of travel between detector switches
 - Exact count of piston round trips
- Obstacles to use in gas
 - No U.S. standards exist for piston provers in compressible flow (some European countries have adopted procedures and ISO is evaluating)
 - Gas pressure must increase to overcome piston inertia
 - Fairly small volume capacity
- Techniques to overcome obstacles
 - New correlations based on equations of state
 - Bi-directional pistons
 - Fast-acting, electronically operated diverter valves
 - Acceleration/deceleration regions before/after measured volume
 - Use Piston to prove turbine and turbine to prove installed station

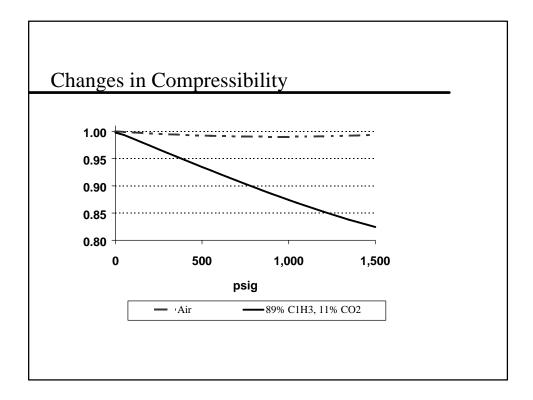
Sonic Nozzle

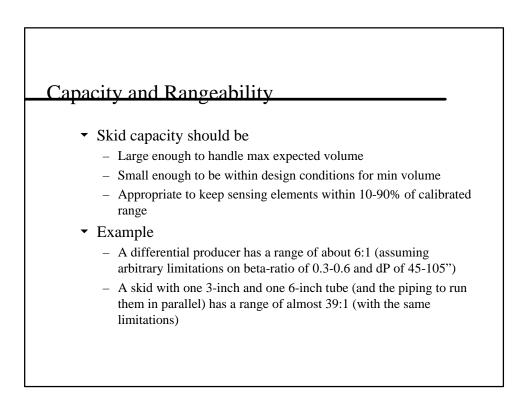
- Under most conditions, a compressible fluid is limited to speeds less than or equal to the speed of sound
- Sonic (or Critical Flow) nozzles use a substantial pressure drop to force the gas to the speed of sound
 - With an open-ended pipe sonic velocity is reached when downstream pressure (psia) is less than 1/2 upstream pressure
 - Properly designed convergent/divergent nozzles can reduce this to about 20% pressure drop
- With careful measurement of upstream pressure, temperature, and gas composition; very accurate (about ±0.25%) mass flow measurement is possible so volumes can be accurately determined

Sonic Nozzle Limitations

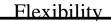
- They require a large differential pressure, so:
 - It can be difficult to get the gas back into the line
 - If hydrocarbon gas is discharged to atmosphere, care must be taken to avoid an explosive atmosphere
 - Liquids can drop out of gas
 - Temperature drop can cause hydrates to freeze
- They are not effective in multi-phase flow
- Calculations require careful evaluation of:
 - Atmospheric pressure
 - Upstream temperature and pressure
 - Density
 - Compressibility

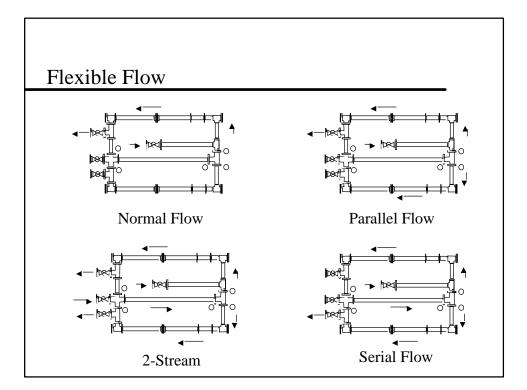
Sonic Nozzle Use in In-Situ Testing

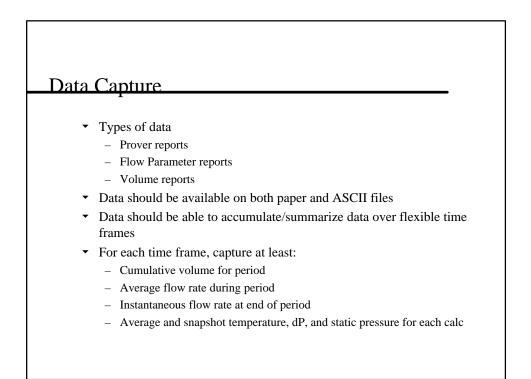

- Considerations
 - Use dry air or non-flammable gas as test fluid
 - Ensure that operating personnel are careful, competent, and observant
 - Verify that atmospheric pressure and gas composition are the same in EFM unit as in test-facility computer
 - Verify that EFM unit uses the same Temp and Pressure base as the test facility
 - Verify that EFM unit uses the same compressibility calculation as test facility
- With proper diligence, a sonic nozzle can be used to certify that the differential producers on a test skid are accurate to ±0.5% of volumetric flow rate


Test Skid Design Considerations

- Flow conditioning
- Capacity and Rangeability
- Operating pressures and temperatures
- Flexibility
- Data Capture
- Transportability


- Any device used on a test skid will be sensitive to flow profile problems
- Confined-space piping on test skid will contribute to poor flow profiles
- Swirl and asymmetry cause flow-rate errors that are related to compressibility and density
- Flow conditioners with straightening vanes are required to get repeatable results that can be transferred from one type of gas to another




Operating Pressures & Temperatures

- The test skid (excluding hoses) should be designed to handle 150% of design pressure on highest design-pressure station in the operation
- Increase hydrostatic test pressure to compensate for the lowest ambient temperature expected
- Hoses should be:
 - Designed for most-likely pressures and temperatures
 - Labeled with MAOP
 - Tested to 150% of MAOP annually (hold test for 24 hours)

- The test skid should be able to:
 - Use one meter to evaluate one stream
 - Use some combination of skid meters in parallel for larger streams
 - Simultaneously evaluate multiple flow streams
 - Re-measure a given stream multiple times
- Possible reasons to re-measure
 - Compare one meter to another to quickly evaluate "calibration"
 - Evaluate impact of damaged plates
- Streams must be positively isolated from each other
 - Double-Block-and-Bleed valves
 - Spectacle blinds

Data Analysis

- At least 30 time periods must be used, any number greater than 30 is acceptable
- It is better to use cumulative gas for each time period than to use flow rates
- Calculate:

 $Error = \frac{\sum Skid Volume - \sum Station Volume}{\sum Skid Volume} \times 100$

- Total error should be less than 1%
- Error for individual time periods should be computed and checked for:
 - » Standard deviation of errors
 - » Mean error
 - $\,$ > Count of periods above and below zero (worse than 60-40% distribution indicates a bias when n>30)

90%Confidence = $\frac{1.65 \times \text{Standard Deviation}}{\sqrt{\text{Sample Count}}} = \text{CONFIDENCE}(0.10, \text{Std Dev}, n)$

Data A	Analysis Exa	ample		
		- Acceptable Range	Meter 1	Meter 2
	Total Error	-1% to 1%	-0.88%	-0.32%
	Mean Error		-0.99%	-0.07%
	Std Deviation		0.58%	0.42%
	90% confidence	-1% to 1%	-1.10% to -0.88%	-0.15% to 0.0%
	Count < 0	32-48	75	44
	Count > 0 Conclusion	32-48	5 Bias low	36 Accurate Meas
	Conclusion		Dius iow	recurate meas
▼]	Notes:			
	 Total error and means conclusions can be 	an error values -0.5 drawn about where		
				•
	 Midpoint of 90% c 	onfidence range mu	st fall between -0.	5 to 0.5% on passing test
	 Rule of thumb court 	nt range		
	» 30 <n<100 ==""></n<100>	acceptable range $= 0.4$	In to 0.6n	

Transportability

- Considerations
 - Weight
 - Width (limited to about 8-feet)
 - Fitting all piping/equipment onto skid
- Non-negotiable items
 - Isolation between streams must be positive (either block and bleed or spectacle blinds)
 - Differential producers must have dual-chamber fittings
 - Flow profile-isolating conditioner must be installed upstream of each station

Transportability Options

- Truck Mounting
 - Larger weight-carrying capacity
 - Considerable flexibility in skid size
 - Leveling can be tricky
 - Transportation for driver can be a problem after hook-up
 - Bed height can be a problem with operations personnel
- Trailer mounting
 - Many weight/size compromises needed
 - Axles and tongue (or 5th wheel) need to be matched to weight
 - Less expensive than truck-mounted
- Cargo
 - Least expensive
 - Least convenient for moving

Summary

- *In-Situ* testing is both necessary and practical
- It ensures
 - The measurement system works together
 - Large stations continue to work
 - Stations in dirty/corrosive/erosive streams continue to work
- Skid certification:
 - Proportional skids should have a built-in prover
 - Differential-producer skids should be calibrated periodically
- The skid must be designed to
 - be transported, leveled, and connected to the process gas
 - allow a wide variety of flows
 - work with expected fluid pressures, temperatures, and fluid qualities
 - capture data consistent with installed equipment