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Overview

u Why do we do in-situ testing
u Test Equipment
u Design Considerations
u Summary
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Elements of a Differential Producer

u Primary Element--mostly steel; subjected to pressure, 
temperature, and flow velocity, but no electronics

u Sensing Element--electronics and exotic metals; subjected 
to pressure and temperature, but not flow; generates 
electronic signals or pen movements.

u Recording Element--Electronics or pen & ink; only sees 
electronic signals or pen movements

u Differential Producers are Inferential Devices
– Assuming all conditions match reference conditions you can use 

Bernoulli’s Equation to infer a flow rate from a differential 
pressure across a known restriction

Assumptions in Calculations

u Constant density at each 
snapshot

u No friction
u Tube is straight and level
u Gas does no work
u Flow profile matches power law
u Single phase flow
u Atmospheric pressure known 

precisely

u Fluid properties known and 
constant for each snapshot

u Enough friction to dampen 
swirl

u Press and Temp known
u Tube roughness in narrow range
u Plate condition meets specs
u Plate bore concentric to tube 

bore
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Measurement System Accuracy

u Each element of a measurement system is:
– manufactured to close tolerances
– inspected by the manufacturer and purchaser
– installed to precise specifications

u After all that, what can still be wrong?

What can be wrong with a new installation?

u Flow profile
u Backwards plate
u Beta Ratio
u Incorrect station parameters
u Non-rigid mounting



4

Flow Profile

u Problem
– 25% of flow not in center 

20% of pipe
– Error can be low by 5% or 

more

u How to prevent it
– Upstream piping
– Flow Conditioners and/or 

Straightening vanes

u How to detect it
– In Situ Testing

Backwards Plate

u Problem
– Leading edge shaped like a venturi
– Reading can be as much as 26% low

u How to prevent it
– Attention to details

u How to detect it
– In Situ testing



5

Beta Ratio

u Problem:
– Uncertainty in gas measurement is controlled to a large 

extent by beta ratio
» Less than 0.3, uncertainty is a function of edge sharpness and 

concentricity
» Greater than about 0.62, it increases very quickly

– Combined error can be 7%
u How do you prevent it

– Proper station design
u How do you detect how “uncertainty” equates to “error”

– In Situ Testing

Incorrect station parameters

u Problem
– Any of the parameters from gas analysis to Tube ID 

will affect the conversion of dP, P, and T to flow rate
– Combined error can be over 10%

u What can you do to prevent errors
– Double check original input (two people)

u What can you do to detect errors
– Verify all parameters each calibration
– In Situ Testing
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Non-Rigid Mounting

u Problem
– The gas does work 

(reducing dP)
– up to 15% error

u How to prevent
– Independent braces
– Use hold-down bolts

u How to detect
– Inspection after installation
– In-Situ testing

Installation Verification

u To insure that a new station meets its potential:
– Install all the parts at their final location
– Use “normal” gas at “normal” temperature and pressure
– Design a test manifold that ensures that all gas goes 

through the test skid after the new station
– Use a certified test skid
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When to Test

u As part of station commissioning process
u Regularly on very large volume stations
u Regularly on particularly erosive/corrosive or dirty 

applications
u When routine plate inspections point to a problem

Test Equipment

u Uncertainty
u Calibrated Differential Producer
u Proportional devices with provers

– Turbine meters
– Vortex-shedding meters

u Inferential vs. Proportional devices
u Calibration methods
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Uncertainty

u Uncertainty means “you don’t know”
u No conclusions can be drawn from data beyond the uncertainty range, 

for example:
– If a calibration device is stated to be ±0.5% 
– Your tested device is off by 0.6%
– Actual results are 0.1-1.1% and the meter has a bias high

u Consequently:
– a calibration device can only certify a calibrated device to within twice its 

uncertainty (i.e., a 0.25% device must be used to calibrate a 0.5% device)
– Midpoint of a confidence range must fall within the dead-zone around 

zero (i.e., the center of a 90% confidence range from a 0.5% skid must be 
in the range -0.5-0.5%) 

Calibrated Differential Producer Skid

u As long as:
– The test manifold has positive isolation between inlet and outlet
– Sensing elements on test skid are calibrated before every test
– Orifice plates on test skid are inspected before and after every test
– Tube on test skid is inspected quarterly
– Recording elements are verified against a calculation standard 

frequently
– The skid is certified against a primary standard annually to be within 

±0.5%

u A properly designed Differential Producer Skid can be used 
to certify a station is ±1.0% 
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Proportional Devices

u All have some moving part that is proportional to mass 
flow rate (motion can be gross like a turbine rotor or 
microscopic like the vibration frequency of a vortex)

u They are all prone to:
– Foul in dirty fluid (20 mils of paraffin on a turbine blade caused 

the reading to be 2% low in one test against a primary standard)
– Have bearing or vibration-sensor wear that is not obvious on 

recording element

u A Proportional Skid must be calibrated against a primary 
standard before and after each station test

Inferential vs. Proportional

Inferential
u Pros

– No moving parts
– Well understood in field
– Very rugged
– Useable in dirtier fluids

u Cons
– Narrow rangability
– “Flow” measurement unrelated 

to fluid density

Proportional
u Pros

– Good rangability
– Flow measurement is directly 

related to mass flow rate

u Cons
– Moving parts prone to fouling 

and wear
– Must be recalibrated before 

and after each use
– Should not be used with dirty 

fluids
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Calibration Methods

u Piston Prover
u Sonic nozzle
u Primary standards not discussed in this paper:

– Weigh tanks
– High pressure Bell Prover

Piston Prover

u Piston used to quickly develop “k-factor” for turbine meter
u Turbine meter is used to prove station being tested
u After test, turbine can be re-proven 

Turbine 
Meter

SS
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Piston Prover Design Considerations

u Piston run times related to flow by:
– Precise displacement volume
– Exact duration of travel between detector switches
– Exact count of piston round trips

u Obstacles to use in gas
– No U.S. standards exist for piston provers in compressible flow (some European 

countries have adopted procedures and ISO is evaluating)
– Gas pressure must increase to overcome piston inertia
– Fairly small volume capacity

u Techniques to overcome obstacles
– New correlations based on equations of state
– Bi-directional pistons
– Fast-acting, electronically operated diverter valves
– Acceleration/deceleration regions before/after measured volume
– Use Piston to prove turbine and turbine to prove installed station

Sonic Nozzle

u Under most conditions, a compressible fluid is limited to 
speeds less than or equal to the speed of sound

u Sonic (or Critical Flow) nozzles use a substantial pressure 
drop to force the gas to the speed of sound
– With an open-ended pipe sonic velocity is reached when 

downstream pressure (psia) is less than 1/2 upstream pressure
– Properly designed convergent/divergent nozzles can reduce this to 

about 20% pressure drop

u With careful measurement of upstream pressure, 
temperature, and gas composition; very accurate (about 
±0.25%) mass flow measurement is possible so volumes 
can be accurately determined
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Sonic Nozzle Limitations

u They require a large differential pressure, so:
– It can be difficult to get the gas back into the line
– If hydrocarbon gas is discharged to atmosphere, care must be taken 

to avoid an explosive atmosphere
– Liquids can drop out of gas
– Temperature drop can cause hydrates to freeze

u They are not effective in multi-phase flow
u Calculations require careful evaluation of:

– Atmospheric pressure
– Upstream temperature and pressure
– Density
– Compressibility

Sonic Nozzle Use in In-Situ Testing

u Considerations
– Use dry air or non-flammable gas as test fluid
– Ensure that operating personnel are careful, competent, and observant
– Verify that atmospheric pressure and gas composition are the same in 

EFM unit as in test-facility computer
– Verify that EFM unit uses the same Temp and Pressure base as the test 

facility
– Verify that EFM unit uses the same compressibility calculation as test 

facility

u With proper diligence, a sonic nozzle can be used to certify 
that the differential producers on a test skid are accurate to 
±0.5%  of volumetric flow rate
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Test Skid Design Considerations

u Flow conditioning
u Capacity and Rangeability
u Operating pressures and temperatures
u Flexibility
u Data Capture
u Transportability

Why do we need Flow Conditioning?

u Any device used on a test skid will be sensitive to flow 
profile problems

u Confined-space piping on test skid will contribute to poor 
flow profiles

u Swirl and asymmetry cause flow-rate errors that are related 
to compressibility and density

u Flow conditioners with straightening vanes are required to 
get repeatable results that can be transferred from one type 
of gas to another 
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Changes in Compressibility
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Capacity and Rangeability

u Skid capacity should be
– Large enough to handle max expected volume
– Small enough to be within design conditions for min volume
– Appropriate to keep sensing elements within 10-90% of calibrated 

range

u Example
– A differential producer has a range of about 6:1 (assuming 

arbitrary limitations on beta-ratio of 0.3-0.6 and dP of 45-105”)
– A skid with one 3-inch and one 6-inch tube (and the piping to run 

them in parallel) has a range of almost 39:1 (with the same 
limitations)
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Operating Pressures & Temperatures

u The test skid (excluding hoses) should be designed to 
handle 150% of design pressure on highest design-pressure 
station in the operation

u Increase hydrostatic test pressure to compensate for the 
lowest ambient temperature expected

u Hoses should be:
– Designed for most-likely pressures and temperatures
– Labeled with MAOP
– Tested to 150% of MAOP annually (hold test for 24 hours)

Flexibility

u The test skid should be able to:
– Use one meter to evaluate one stream
– Use some combination of skid meters in parallel for larger streams
– Simultaneously evaluate multiple flow streams
– Re-measure a given stream multiple times

u Possible reasons to re-measure
– Compare one meter to another to quickly evaluate “calibration”
– Evaluate impact of damaged plates

u Streams must be positively isolated from each other
– Double-Block-and-Bleed valves
– Spectacle blinds
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Flexible Flow

Parallel Flow

2-Stream Serial Flow

Normal Flow

Data Capture

u Types of data
– Prover reports
– Flow Parameter reports
– Volume reports

u Data should be available on both paper and ASCII files
u Data should be able to accumulate/summarize data over flexible time 

frames
u For each time frame, capture at least:

– Cumulative volume for period
– Average flow rate during period
– Instantaneous flow rate at end of period
– Average and snapshot temperature, dP, and static pressure for each calc
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Data Analysis

u At least 30 time periods must be used, any number greater than 30 is 
acceptable

u It is better to use cumulative gas for each time period than to use flow 
rates

u Calculate:

– Total error should be less than 1%
– Error for individual time periods should be computed and checked for:

» Standard deviation of errors
» Mean error
» Count of periods above and below zero (worse than 60-40% distribution 

indicates a bias when n>30)

Error
Skid Volume Station Volume

Skid Volume
=

−
×∑ ∑

∑
100

90%Confidence =  
1.65  Standard Deviation

Sample Count
CONFIDENCE(0.10,Std Dev,n)

×
=

Data Analysis Example

Acceptable Range Meter 1 Meter 2
Total Error -1% to 1% -0.88% -0.32%
Mean Error -0.99% -0.07%
Std Deviation 0.58% 0.42%
90% confidence -1% to 1% -1.10% to -0.88% -0.15% to 0.0%
Count < 0 32-48 75 44
Count > 0 32-48 5 36
Conclusion Bias low Accurate Meas

u Notes:
– Total error and mean error values -0.5 to 0.5% mean “accurate values” no 

conclusions can be drawn about where a number falls in that range
– Midpoint of 90% confidence range must fall between -0.5 to 0.5% on passing tests
– Rule of thumb count range

» 30 <n<100  ==> acceptable range = 0.4n to 0.6n
» n>100         ==> acceptable range =0.45n to 0.55 n
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Transportability 

u Considerations
– Weight
– Width (limited to about 8-feet)
– Fitting all piping/equipment onto skid

u Non-negotiable items
– Isolation between streams must be positive (either 

block and bleed or spectacle blinds)
– Differential producers must have dual-chamber fittings
– Flow profile-isolating conditioner must be installed 

upstream of each station 

Transportability Options

u Truck Mounting
– Larger weight-carrying capacity
– Considerable flexibility in skid size
– Leveling can be tricky
– Transportation for driver can be a problem after hook-up
– Bed height can be a problem with operations personnel

u Trailer mounting
– Many weight/size compromises needed
– Axles and tongue (or 5th wheel) need to be matched to weight
– Less expensive than truck-mounted

u Cargo
– Least expensive
– Least convenient for moving
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Summary

u In-Situ testing is both necessary and practical
u It ensures

– The measurement system works together
– Large stations continue to work 
– Stations in dirty/corrosive/erosive streams continue to work

u Skid certification:
– Proportional skids should have a built-in prover
– Differential-producer skids should be calibrated periodically

u The skid must be designed to
– be transported, leveled, and connected to the process gas
– allow a wide variety of flows
– work with expected fluid pressures, temperatures, and fluid qualities
– capture data consistent with installed equipment


