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Disease detection is crucial for timely intervention to increase treatment success and

reduce negative impacts on pig welfare. The objective of this study was to monitor changes

in feeding behaviour patterns to detect pigs that may need medical treatment or extra

management. The data included 794,509 observation days related to the feeding behaviour

and health information of 10,261 pigs. Feeding behaviour traits were calculated including

the number of visits per day (NVD), time spent in feeding per day (TPD), and daily feed

intake (DFI). The health status (sick or healthy) of pigs were predicted based on the features

including the original feeding behaviour traits and features derived from those using a

machine-learning algorithm (Xgboost). The predictions were based either on the features

from the same day (one-day window), from the same day and two previous days (three-day

window), or from the same day and six previous days (seven-day window). The model

based on the seven-day window gave the most robust results and achieved an 80% AUC, 7%

F1-score, 67% sensitivity, 73% specificity, and 4% precision. The analyses indicated that the

features related to the deviation of a pig's observed TPD and DFI from the expected TPD and

DFI were the most informative, as they gained the highest importance score. In conclusion,

the feeding behaviour-based features gave good sensitivity and specificity in predicting

sickness. However, the precision of the method was very low, possibly due to low preva-

lence of the monitored sickness symptoms, limiting the application of the approach in

real-life.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pig welfare has gained more and more attention in recent

years and should be improved, according to general

consensus (Mellor, 2016). Animals express their wellbeing

through feeding, drinking, social behaviour etc. Changes in

behaviour can be used as early signs of discomfort and
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sickness (Matthews et al., 2017). In a commercial farm, only

limited time is available to observe the individual behavioural

changes in pigs, which only permits detecting considerable

behavioural changes. This may lead to the too late treatment

of the sick animal or too late improvements in conditions that

create discomfort to animals causing losses in production and

impaired welfare.
of IAgrE. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/
mailto:alper.kavlak@helsinki.fi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystemseng.2023.01.004&domain=pdf
www.elsevier.com/locate/issn/15375110
www.elsevier.com/locate/issn/15375110
https://doi.org/10.1016/j.biosystemseng.2023.01.004
https://doi.org/10.1016/j.biosystemseng.2023.01.004
https://doi.org/10.1016/j.biosystemseng.2023.01.004
http://creativecommons.org/licenses/by/4.0/


Nomenclature

AI Artificial intelligence

AUC Area under the ROC curve

CV Cross-validation

delta_DRDFI Difference between the means of the daily

rank of daily feed intake from the seven- and

three-day windows

delta_DRTPD Difference between the means of daily rank

of time spent in feeding per day from the

seven- and three-day windows

delta_NVD Difference between the means of number of

visits per day from the seven- and three-day

windows

delta_p Difference between themeans of the proportion of

intervals belonging to the first distribution from

the seven- and three-day windows

delta_ResDFI Difference between themeans of residuals of

daily feed intake from the seven- and three-

day windows

delta_ResTPD Difference between the means of residuals

of time spent in feeding per day from the

seven- and three-day windows

delta_m1 Difference between the means of the means of

intervals belonging to the first distribution from

the seven- and three-day windows

delta_m2 Difference between the means of the means of

intervals belonging to the second distribution

from the seven- and three-day windows

delta s1 (s1) Difference between the means of the

standard deviations of intervals belonging to

the first distribution from the seven- and

three-day windows

delta s2 (s2) Difference between the means of the

standard deviations of intervals belonging to

the second distribution from the seven- and

three-day windows

DFI Daily feed intake

DRDFI Daily rank of daily feed intake within the group of

pigs

DRTPD Daily rank of time spent in feeding per day within

the group of pigs

ML Machine learning

MLP Multilayer Perceptron

m3_DRDFI Daily rank of daily feed intake with three-day

window

m3_DRTPD Daily rank of time spent in feeding per day

with three-day window

m3_NVD Number of visits per day with three-day window

m3_p Proportion of intervals belonging to the first

distribution with three-day window

m3_ResDFI Residuals of daily feed intake with three-day

window

m3_ResTPD Residuals of time spent in feeding per day

with three-day window

m3_m1 The means of intervals belonging to the first

distribution with three-day window

m3_m2 The means of intervals belonging to the second

distribution with three-day window

m3 s1 (s1) The standard deviations of intervals belonging

to the first distribution with three-day window

m3_s2 (s2) The standard deviations of intervals belonging

to the second distribution with three-day

window

m7_DRDFI Daily rank of daily feed intake with seven-day

window

m7_DRTPD Daily rank of time spent in feeding per day

with seven-day window

m7_NVD Number of visits per day with seven-day window

m7_p Proportion of intervals belonging to the first

distribution with seven-day window

m7_ResDFI Residuals of daily feed intake with seven-day

window

m7_ResTPD Residuals of time spent in feeding per day

with seven-day window

m7_m1 The means of intervals belonging to the first

distribution with seven-day window

m7_m2 The means of intervals belonging to the second

distribution with seven-day window

m7 s1 (s1) The standard deviations of intervals belonging

to the first distribution with seven-day window

m7_s2 (s2) The standard deviations of intervals belonging

to the second distribution with seven-day

window

NVD Number of visits per day

p Proportion of intervals belonging to the first

distribution

ResDFI Residuals of daily feed intake

ResTPD Residuals of time spent in feeding per day

ROC Receiver Operator Characteristics

sd7_DRDFI Standard deviation of the daily rank of daily

feed intake within the seven-day window

sd7_DRTPD Standard deviation of daily rank of time spent

in feeding per day within the seven-day

window

sd7_NVD Standard deviation of number of visits per day

within the seven-day window

sd7_p Standard deviation of the proportion of intervals

belonging to the first distribution within the

seven-day window

sd7_ResDFI Standard deviation of residuals of daily feed

intake within the seven-day window

sd7_ResTPD Standard deviation of residuals of time spent

in feeding per day within the seven-day

window

sd7_m1 Standard deviation of the means of intervals

belonging to the first distribution within the

seven-day window

sd7_m2 Standard deviation of the means of intervals

belonging to the second distribution within the

seven-day window

sd7 s1 (s1) Standard deviation of the standard deviations

of intervals belonging to the first distribution

within the seven-day window
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sd7 s2 (s2) Standard deviation of the standard deviations

of intervals belonging to the second

distribution within the seven-day window

TPD Time spent in feeding per day

m1 The means of intervals belonging to the first

distribution

m2 The means of intervals belonging to the second

distribution

s1 (s1) The standard deviations of intervals belonging to

the first distribution

s2 (s2) The standard deviations of intervals belonging to

the second distribution
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Although small changes in daily behaviour are not easy to

quantify, data collected automatically from sensors and

feeders may include valuable information concerning signs of

welfare problems. As an example, increased restlessness

among pigs can signal an outbreak of tail biting up to six days

prior, which on a commercial scale would be impossible to

detect during daily checks (Matthews et al., 2017). In addition,

microphones have been used to monitor the sounds of

coughing of pigs to build an intelligent alarm system to detect

the disease in its early stage (Guarino et al., 2008), 3D-cameras

to predict tail biting outbreaks by identifying lowered tail

postures (D'Eath et al., 2018), and deviations in typical feeding

patterns to monitor overall welfare of pigs (e.g., Brown-Brandl

et al., 2013; Bus et al., 2021; Munsterhjelm et al., 2015).

The data collected from the sensors and feeders create

challenges to finding the true signals of behavioural changes

out of the noise. The complexity of big data with non-linear

dependencies and unknown interactions across multiple vari-

ables challenges the assumptions of many standard statistical

methods (Valletta et al., 2017). Machine learning (ML) methods

are highly efficient at determining non-linear relationships

between variables in the data (Hastie et al., 2009). As an

example, Pandey et al. (2021) collected data on movements,

vocal sound, and temperature of pigs using ear sensors and

applied ML models to predict the health and welfare status of

pigs based on the collected data. Based on their results, the ML

approach is a powerful tool for monitoring the health status of

pigs leading to reduced medical treatments, cost savings and

enhanced animal welfare. Thus, MLmethods, such as eXtreme

Gradient Boosting, Random Forest, and Support Vector Ma-

chine, provide a promising approach for detecting behavioural

changes in farm animals that are associated with possible

welfare problems (Liakos et al., 2018). Regardless of themethod,

data quality is important to avoid unwanted outcomes and to

gain as robust results as possible. Setting criteria for outliers

and applying data filtering prior to applying ML methods to

data are therefore important (Alsaaod et al., 2012).

The objective of this study was to use ML methods applied

on feeding behaviour data to detect pigs that are potentially

sick and may need medical treatment or extra management.
2. Material and methods

2.1. Feeding behaviour data and pig housing

The feeding behaviour data were provided by Figen Oy (Pie-

tarsaari, Finland) from their central test station, spanning

from 2011 to 2016. Pigs arrived at the test station either on a
Tuesday or a Wednesday, and the tests began on a Saturday.

The pigs were grouped into different pens according to their

arrival age (89 ± 10 days), weight (34.4 ± 6.4 kg), and sex (only

boars or a combination of gilts and castrates). The average

daily gain was 946 ± 113 g/day in total testing time (on

average, 95 ± 3 days), and the average slaughter weight and

age were 121.2 ± 12.9 kg and 186 ± 10 days, respectively. The

average number of piglets in a pen was 9.8 (±1.19). Water was

available ad libitum. Also, feeding type (dry feeding) was ad

libitum, consisting of two commercial feedstuffs, and the

proportion of the two feedstuffs was based on the growth

rate curve of an average pig from the previous test periods.

Antibiotics and other drugs were given only for the sick an-

imals based on veterinary prescriptions. The facility had

automated ventilation based on pig age and outdoor tem-

perature, and artificial lighting was on from 7 a.m. to 3 p.m.

The size of pen was 16.8 m2 with a concrete floor (2/3 solid, 1/

3 slatted). Feedings were recorded automatically using the

Schauer Spotmix with Schauer Multilayer Perceptron (MLP)

electronic feeders and MLP manager data management

software (Schauer Agrotronic GmbH). For further informa-

tion see Kavlak et al. (2021).

The raw data consisted of 28,826,029 individual feeding

visits from 10,261 pigs (Finnish Yorkshire, Finnish Landrace,

and F1-crossbred), and included ear tag transponder id, date,

time of entering the feeder, time leaving the feeder, and feed

intake per visit. The feed intake was measured as a weight of

the feed before and after the pig has been in feeder. The

number of visits per day (NVD), time spent in feeding per day

(TPD), and daily feed intake (DFI) were calculated from the

recorded observations. Observations from the first testing day

were not included due to the DFI exhibiting some of the pigs as

extreme outliers, may have been caused by the feeding

recording system. Similar extreme DFIs were not observed on

a large scale on any other testing days.

2.2. Sickness data

The sickness data were recorded daily by the test station staff

members during routine checks (twice a day) and included the

ID of the pig, the symptom(s), and the date. The symptoms

were classified as a cough, a limp, loss of appetite (the pigs

who have been eating less than 600 g), skin damage, and a

bitten tail. Out of 794,509 daily health observations, 13,018

were related to the recorded symptoms. Within any given day

a pig could suffer from several symptoms. In the ML models,

pigs with any of the recorded symptoms were classified as

“sick” for that given day and pigs with no recorded symptoms

were classified as “healthy”.
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2.3. Feature processing

The absolute values of TPD and DFI may not be optimal fea-

tures for predicting the sickness status of an animal, as they

are strongly related to the animal's age. Therefore, we created

new features, including daily ranks and residuals. Daily ranks

relate the rank of an animal's observation (DRTPD and DRDFI)

compared to other pigs within a pen in a given day, and re-

siduals (ResTPD and ResDFI) describe that animal's difference

from the expected value of TPD and DFI for a pig of same age.

The residuals of TPD and DFI were calculated by fitting a

polynomial (quadratic) regression model to the whole data

set:

yi¼b0þ b1* ageiþ b2* age2i þ ei (1)

where yi is either the TPD or DFI of pig i, b0 is overall mean, agei
is the age of pig i related to observation yi, b1 and b2 are linear

and quadratic regression coefficients, and ei is the residual

used in ML.

Regarding animal welfare based on feeding behaviour,

short-term visits have been considerably challenging to

interpret in animal behaviour analyses when conventional

methods are used (Young& Lawrence, 1994). The frequency of

visits without eating and intervals between visits can be

informative feeding patterns that can contribute to predict the

health status of animals (Garrido-Izard et al., 2020). Tolkamp

et al. (1998) proposed log-normal distribution to model

within and between feeding events. In this study, the intervals

betwThe authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.een

feeding visits were calculated as the difference between the

time of entering the feeder and the time leaving the feeder

during the previous feeding. The intervals were first log

transformed and then a mixture of two normal distributions

was fitted for the log-transformed intervals of each pig for

each day. The first distribution relates to short visits during

one meal and second representing intervals between meals.

The daily features for each pig from this mixture distributions

were the proportion of intervals belonging to the first distri-

bution (p), s1 (s1) and s2 (s2) the standard deviations, and m1

and m2 the means of the distributions.

Finally, the features used in ML were NVD, TPD, DFI,

DRTPD, DRDFI, ResTPD, ResDFI, m1, m2, s1, s2 and p. The mean

and the distribution of the features in the healthy and sick

groups over time (Week) are presented in Fig. 1. Prior to

creating the features and ML models, extreme values of the

NVD, TPD, DFI (outside quantiles 0.5% and 99.5% corre-

sponding to likely registration errors from the feeders) were

removed (less than 0.3% of the sick daily observations and less

than 5% of the healthy daily observations) from the data.

The health status of a pig was predicted using three

different window lengths for determining features: a one-day

window, a three-day window, and a seven-day window

(number of observations are given in Table 1). In the one-day

window approach, the health status of a pig was predicted

based on the features from the same day. In the three-day

window approach, the health status of a pig was predicted

based on the mean of the features from the same day and the
previous two days. Similarly, for the seven-day window

approach, the health status of a pig was predicted based on

the mean of the features from the same day and the previous

six days. Based on the three- and seven-day window features,

a new features “delta” and “SD” were calculated; delta as a

difference between the means of the same feature from the

seven- and three-daywindows and SD as a standard deviation

of the features within the seven-day window. Windows were

overlapping.

The number of daily sick and healthy observations are

given in Table 1. The number of observations varies between

themodels because in three- and seven-daywindowmodels if

any of the daily features within a tree or seven days, respec-

tively, were missing for a given pig, the pig was not included

into analysis. In addition, various combinations of symptoms

were used; in Alt-1 -model, “a limp” and “loss of appetite”

were treated as “sick”, while the other symptoms (cough,

bitten tail, skin damage) were omitted and in Alt-2 -model

“bitten tail” and “skin damages” were treated as “sick” (Table

1). For any given pig, on average there were 7.1 consecutive

sick days (an average length of the sickness period).

2.4. Xgboost algorithm

eXtreme Gradient Boosting (Xgboost) is an ML method similar

to Random Forest, decision tree, boosting, gradient boosting,

etc. It is an ensemble classifier derived from the gradient

boosting decision tree. Xgboost combines weak base classi-

fiers into a strong classifier. At each iteration of the training

process, the residual of a base classifier is used in the next

classifier to optimise the objective function. In this study, the

Xgboost algorithm was applied using the R package Xgboost

(Chen et al., 2018) in R 3.6.1 software (R Core Team, 2019).

Hyperparameters are optimization parameters that tune

the performance of ML algorithms (Bergstra& Bengio, 2012). In

this study, the hyperparameters were chosen using a grid

search of the number of boosting iterations (nrounds),

maximum depth of a tree (max-depth), eta that controls the

learning rate aswell as gamma, lambda, subsample. The value

grid used for the hyperparameters is given in Table 2 and the

final (best) hyperparameters are given in Table 3 based on

training data. The objective of the classification model was

binary (binary:logistic) and the model was fitted by minimizing

the binary classification error rate.

2.5. Performance testing and cross-validation

For the performance of the Xgboost algorithm, the data were

split into training and testing data sets. In this study, 70% of

the observations were used in training the model and 30% in

testing it (Fig. 2). A random sampling of observations was

stratified according to the symptoms and pig ID to ensure that

the proportion of sick and healthy observations was the same

in both data sets and that data from different pigs were used

for training and testing the model.

To optimise the hyperparameters and the features and to

avoid overfitting the models, we applied 10-fold cross-

validation (CV) during model training. The training data set

was divided into 10 sets (folds) of equal size. In each validation

step, nine of the sub-setswere used for training themodel and

https://doi.org/10.1016/j.biosystemseng.2023.01.004
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Fig. 1 e Boxplots of the features for the testing period (in weeks) grouped by the disease status of the pigs (13,018 daily sick

observations and 781,491 daily non-sick observations). The abbreviations of the features are explained in the text.
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Fig. 1 e Continued
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Fig. 1 e continued
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Table 1 e Number of symptoms and “sick” and “healthy” observations (pigs x days) for each model.

Limp Cough Bitten tail Loss of appetite Skin damage Sick observations Healthy observations Total

Model

1-day 6603 988 2941 1015 1471 13,018 781,491 794,509

3-day 6377 956 2888 968 1357 12,546 761,477 774,023

7-day 5747 846 2787 824 1060 11,264 722,070 733,334

Alt-1a 5747 e e 824 e 6571 722,070 728,641

Alt-2b e e 2787 e 1060 347 722,070 725,917

Prevalence 0.008 0.001 0.004 0.001 0.002 0.016

N ¼ Number of observations; Prevalence ¼ Proportion of total symptoms labelled as “sick” out of the total observations in the data based on the

1-day model; a In the Alt-1 model, only “a limp” and “loss of appetite” were labelled as “sick” with the seven-day window model and all other

symptoms were omitted; b In the Alt-2 model, only “a bitten tail” and “skin damage” were labelled as “sick” with the seven-day windowmodel,

and all other symptoms were omitted.

Table 2 e Range of the values of the hyperparameters.

Hyperparameter Description Range of values

nrounds number of boosting iterations 10e20

max_depth maximum depth of a tree 3e6

eta controls the learning rate 0.05e0.5

gamma controls the minimum reduction in the loss function 0e5

lambda ridge regularization to prevent overfitting 1.0e2.0

subsample subsample ratio of the training observations 0.5e1.0

Table 3 e The final values (best) of hyperparameters
based on training data.

Window length (day)

Final Hyperparameters 1 3 7 Alt-1a Alt-2b

max_depth 4 4 4 3 4

Eta 0.45 0.45 0.45 0.45 0.45

Gamma 4 5 4 2 3

Lambda 1 2 1.4 2 2

Subsample 1 0.9 0.8 0.9 1
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one sub-set was used for testing themodel (Fig. 2). In addition,

we used an additional parameter (scale_pos_weight: the ratio

of number of negative class to the positive class) in themodels

to control the balance of classes weights due to the imbal-

anced data set. The parameter was calculated as the propor-

tion of the number of sick observations to number of healthy

observations. From each validation step, the area under the

ROC curve (AUC) was calculated from the holdout cross-fold
Fig. 2 e Overview of 10-fold cross-
(Validation-fold) (Hastie et al., 2009). The set of hyper-

parameters that gave the best performance metric (AUC) of

the model was selected to train the model in the training set

and then applied the obtainedmodel for predicting the health

status in the testing set (Testing data set in Fig. 2).

Using the test data set, the models were evaluated based

on precision (proportion of predicted true positives (an animal

predicted as sick) out of all positive predictions; TP/(TP þ FP)),

sensitivity (proportion of positives (sick) that were identified

correctly; TP/(TP þ FN)), and specificity (proportion of nega-

tives (healthy) that were identified correctly; TN/(TN þ FP)). In

addition, the harmonic means of the precision and sensitivity

(F1-score¼ 2 x precision x sensitivity/(precisionþ sensitivity)),

and AUC (receiver operating characteristics) curve were

calculated. The model was considered non-informative with

an AUC �0.50, weak with an AUC of 0.50e0.70, accurate with

an AUC of 0.70e0.90, and highly accurate with an AUC �0.90

(Swets, 1988; Greiner et al., 2000).
validation and model testing.
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We also calculated feature importance using the ability of

Xgboost to remove the non-informative or redundant pre-

dictors from the model (Chen et al., 2018). While fitting the

Xgboost models, an importance matrix was produced from

each model. The “gain” metric indicates the relative contri-

bution of the corresponding feature to themodel calculated by

taking each feature's contribution for each tree in the model.

The “cover” metric indicates the relative number of observa-

tions related to this feature and the frequency, which is the

percentage of the relative number of times a particular feature

occurs in the trees of the model. An obtained score of each

feature is based on how much more information about the

class is gained when using that feature. We quantified the

importance of features by “feature gain” (Fig. 3). The steps

given above were carried out with the R package caret (Kuhn

et al., 2018) in R software (R Core Team, 2019).
3. Results

3.1. Classification performance of the models

The models were evaluated based on classification perfor-

mance metrics, including AUC. The best performance ac-

cording to AUC was obtained with the model applied in the
Fig. 3 e Importance of the Xgboost features for the different wi

contribution of the corresponding feature to the model. The ab
seven-day window (Table 4). In addition, the difference for

accuracy of the performance metrics with the training and

testing data sets were small which indicated that over- or

under-parametrization of the models was avoided. The best

hyperparameters were obtained based on data that provided

during training and used in prediction of the models (Table 3).

The sensitivity and specificity of the models were accept-

ablewith all window lengths. However, precision and F1-score

were quite low. Again, the best performance (67% sensitivity

and 73% specificity) was obtained with the model applied in

the seven-day window. Unlike the seven-day window model,

other models performed at slightly lower efficiency according

to the performance metrics. Overall, the results show that by

increasing the window length, the performance of the classi-

fication models increases.

Alternative labelling of sick animals was tested with two

alternative models. For the first alternative model (Alt-1

model), we only labelled “a limp” and “loss of appetite” as

“sick” and omitted all other symptoms (cough, bitten tail and

skin damage). This model gave 3e4% better performance

based on AUC than the performance of the actual seven-day

window model (Table 4). On the other hand, the second

alternativemodel (Alt-2model), where “a bitten tail” and “skin

damage” were categorized as “sick” and omitted all other

symptoms (cough, limp and loss of appetite), gave a similar
ndow length. The “Information Gain” implies the relative

breviations of the features are explained in the text.
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Table 4 e Results from the models based on testing data and training (average from the 10-fold CV) (given in parentheses).

Window length (day)

Metrics 1 3 7 Alt-1 Alt-2

AUC 0.70 (0.71) 0.73 (0.75) 0.80 (0.81) 0.83 (0.85) 0.77 (0.80)

Precision 0.03 (0.03) 0.03 (0.03) 0.04 (0.04) 0.03 (0.03) 0.01 (0.01)

Sensitivity 0.60 (0.61) 0.63 (0.65) 0.67 (0.72) 0.67 (0.71) 0.67 (0.74)

Specificity 0.67 (0.67) 0.69 (0.69) 0.73 (0.73) 0.78 (0.81) 0.70 (0.70)

F1-score 0.06 (0.06) 0.06 (0.06) 0.07 (0.08) 0.05 (0.06) 0.02 (0.02)

In the Alt-1 model, only “a limp” and “loss of appetite” were labelled as “sick” with the seven-day window model and all other symptoms were

omitted.

In the Alt-2 model, only “a bitten tail” and “skin damage”were categorized as “sick”with the seven-day windowmodel, and all other symptoms

were omitted.

Table 5 e Tabular visualization of observed versus
predicted values from the ALT-1 model based on testing
data.

Observed values

Sick Healthy Total

Predicted Values Sick TP (1,321) FP (46,682) 48,003

Healthy FN (650) TN (169,939) 170,589

Total 1971 216,621 218,592

The observation number of the observed and predicted values are

given in parentheses. TP ¼ true positives, TN ¼ true negatives,

FP ¼ false positives, FN ¼ false negatives.
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performance as labelling all symptoms as “sick” (Table 4). A

detailed distribution of assessments for Alt-1 is presented in

Table 5, showing that the proportion of animals predicted as

being sick was approximately 22%, despite the prevalence

based on observed data being around 1%, resulting in low

precision.

3.2. The most important features

The most informative features were those related to daily

feeding time and daily feed intake: ResTPD and ResDFI in the

one-day and three-day windowmodels and SD_ResTPD in the

seven-day windowmodel. They alone explained between 20%

and 35% of the information gain (Fig. 3). The importance of the

other features was less than 10% (Fig. 3). In general, the new

features calculated from the NVD, TPD, and DFI were more

important in predicting the health status than the absolute

values of NVD, TPD, and DFI. As we expected, using the seven-

day window model with only the best 10 important features

instead of all 40 features increasedmodel performance (based

on AUC) slightly (by 1e2%) and reduced the model's run time

(results are not shown).
4. Discussion

In this study, the Xgboost algorithm, with features based on

feeding station records, was applied to predict the possible

sickness of pigs in a test station environment. The considered

symptoms were limping, coughing, a bitten tail, loss of

appetite, and skin damage, or any combination of these

symptoms. In general, themodels reached relatively high AUC
(0.7e0.83). However, model precision was very low (the

models predict more sick animals than are reported in the

data). Similar to our study, Thomas et al. (2021) predicted

diarrhea based on weight dependent water and feed intake

using a machine learning approach with seven different

methods. Most of the testedmethods failed to detect diarrheic

pigs due to substantial individual instability on feeding or

water related to weight. Even with the best model, 25% of the

sick piglets were not detected. Similar to our study, Maselyne

et al. (2018) investigated if unusual behavioural changes in the

feeding pattern in pigs can be utilised as an indicator of

health, welfare, and productivity problems. Although they

had considerably high specificity (98.7%) and accuracy (96.7%),

sensitivity (58.0%) and precision (71.1%) were lower causing

false alerts of health problems and lack of confidence of the

farmers for the system. A higher precision (an average of 80%)

has been achieved also in some other studies, e.g., in Alsaaod

et al. (2012) and Gertz et al. (2020). Gertz et al. (2020) reported

very good classification performance (86% AUC, 81% F1-score,

78% specificity, and 81% sensitivity) using the Xgboost algo-

rithm, where locomotion-related diseases were predicted

using locomotion data collected from leg and neck sensors in

a commercial farm of 397 dairy cows. The health status of

cows was monitored by on-farm staff and veterinarians dur-

ing their daily routine. Based on their findings, using various

models with different features and window segments

increased model performance and sickness-related behav-

iours were accurately identified. Moreover, Alsaaod et al.

(2012) reported better classification accuracy (76%) for pre-

dicting lameness in dairy cows using features created from

the pedometric activity and behaviour data on lying down

compared to classification accuracy (65%) achieved with the

raw data by using the Support vector machine classification

model. Thus, in line with our findings, creative new features

calculated from the raw data are more informative than the

actual sensor data in predicting the sickness of animals.

In our study, pig health was monitored by station staff

during the daily routine check. It is possible that only themost

severe cases were detected by the staff and some milder ones

were missed, and thus the true prevalence of symptoms may

be higher than the observed 2% (depending on what symp-

toms were classified as “sick”) in the data (Table 1). Thus,

some of the true negatives (indicated as healthy in the data)

could have been sick instead. Higher actual prevalence is

supported by Munsterhjelm et al. (2015), where 2672 pigs in

the same test station (L€angelm€aki, Finland) weremonitored in

https://doi.org/10.1016/j.biosystemseng.2023.01.004
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detail for symptoms three to four times daily by farm staff,

who were supervised by a herd veterinarian, between

November 2007 and December 2008. During that period, the

prevalence of tail biting was 13%, 11% for limping, 2% for skin

damage, and 6.1% for other symptoms (including diarrhoea,

weight loss, vomiting etc.). Another possible explanation for

the low precision in our study could be that the classifier did

not learn the optimal decision boundary with our highly

imbalanced data set despite the weighing we used for the

samples from the minority class. Any real dataset may have

several imbalanced classes causing biased classification in

machine learning. Various techniques have been developed to

deal with this problem such as undersampling methods,

oversampling methods, ensemble methods etc. that improve

the performance of classifiers (He & Garcia, 2009; Japkowicz &

Stephen, 2002; Provost, 2000). Although we scaled the class

weights according to the prevalence of observations in each

class to solve the imbalanced classification problem, we

should try out other suggested methods and find the best one

in future for our dataset. However, the most effective tech-

nique still may vary depending on the dataset.

Unusual behavioural changes in pigs may indicate sick-

ness. These behavioural changes may be rapid and indicate

sickness immediately after the behavioural changes have

occurred or the changes may begin several days prior to

sickness. Therefore, we appliedmodelswith different window

lengths. We found a clear tendency that considering records

from several previous days instead of a single day was bene-

ficial (AUC increased from 0.70 to 80). Gertz et al. (2020) also

reported that using various window lengths allows the clas-

sifier to select the amount of data leading to the best predic-

tion performance. However, the Xgboost preferably selected

shorter window lengths in their study compared to our study.

Thus, it is always a good practise to test several window

lengths because method performance depends on the fea-

tures and nature of the data, and the long window may not

always be optimal. Also, in other behavioural studies (e.g.,

Piette et al., 2020; Riaboff et al., 2020; Smith et al., 2016), the

sliding window length approach has had a positive impact on

algorithm performances.

Selecting the optimal hyperparameters is important for

successful model performance, as the ML methods have a

high risk of under/overfitting the training data. However,

there is no optimal way to tune the hyperparameters. In our

study, the hyperparameters were tuned using the grid search

method (Bergstra& Bengio, 2012) with 10-fold CV, and the best

hyperparameters were selected for further analyses. Thus,

even though tuning the hyperparameters requires extra

computing time, obtaining good prediction performance is

recommended.

Finally, the set of features available for prediction is crucial

for improving the performance of the classification. In our

study, the features were calculated from the feeding behav-

iour data with short and long window segmentations. The

most important features were ResTPD and ResDFI along with

SD_ResTPD in the seven-day window length model (Fig. 3),

which indicate that using the residuals of feeding behaviour

traits is more beneficial in predicting pig sickness than abso-

lute values. Thus, a deviation from a typical daily feeding time

or daily feed intake compared to the feeding time and daily
feed intake of an average pig at the same age is a good indi-

cation of a possible health problem. Similarly, daily ranks of

TPD and DFI were informative and are easier to calculate than

the residuals of TPD and DFI. Hoy et al. (2012) also suggested

that daily ranks based on feeding must be classified because

many pigs have access to one feeding place in a pen. There-

fore, we propose using features that indicate a difference of an

animal's feeding behaviour from its pen mates (rank) or from

pigs of the same age (residual) rather than raw observations

(NVD, TPD, DFI). Furthermore, solely using themost important

features in the model instead of all available features

improved algorithm performance slightly (1e2%).

From a practical standpoint, high sensitivity is more

important than high precision because the final assessment of

an animal's sickness would be based on a re-check by the

management staff if the applied algorithm suggests that the

animal may be sick. The cost of re-checking additional ani-

mals should be smaller than treating a sick animal that was

not detected early enough. Despite this, the precision should

be far higher than what was achieved here to gain trust in

users of the algorithm on a routine basis. Features derived

from other automatic data recording systems, such as loco-

motion sensors, could improve the predictive performance of

the method.
5. Conclusions

Based on the performance metrics (AUC, sensitivity, and

specificity), pig sickness is detectable by applying the Xgboost

algorithm to the feeding behaviour data. However, very low

precisions were obtained, possibly due to imbalanced data.

Using the observations from several days (seven days) gave

more accurate predictions than predictions based on a single

day, even though the results did not differ considerably.When

the prediction was based on one- or three-day observations

(one- and three-day windows), the most important features

were ResTPD and ResDFI. Overall, we examined a vast, but

limited set of features, and our results can be improved by

calculating new features, considering interactions between

features, using different window length(s), different methods

etc. This would require more research.
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