Do you ever wonder why your Equipment Wears Out when you're trying hard to prevennt "wear"?

- » You change oil as recommended
- » You use great oil (perhaps better than required)
- » Operators are watched to guard against abusive operating characteristics
- » Oil Analysis says everything's okay

Typical Conclusion:

Our *wear* is "Normal" Not much more can be done

Who do you depend on for "Wear Prevention" advice?

Typically is the equipment manufacturer and your Lube supplier Do they have any vested interest in continuing your wear as is and confirming that it is "normal"?

Environmental Concepts WEAR REDUCTION Strategy:

- Eliminate the biggest cause of "normal wear" which is particulate in the 2-20 micron size Soot is harder than steel and later model engines have the most soot-it's like sandblasting your wear surfaces. Find out how much particulate is currently there through oil analysis which includes particle counts by size Filter out troublesome particulate using "By-Pass" Filtration in addition to current "full-flow" filtration
- Improve the oil's ability to resist wear by using more "boundary lubricant" in the "additive package" Also add more rust inhibitors, dispersants, detergents, acid neutralizers to lengthen the life of the Additive
 - In effect, you filter and strengthen the oil so that it does not need to be changed for perhaps 85,000 miles In reality, the oil is changed based on the results of oil analysis—oil itself does not wear out It's <u>better</u> than changing your oil every day before you drive!

How will your current "Wear Advisors" like this recommendation? It probably will not be well received.

Manufacturer impact—You would likely double your equipment life with a 50% reduction in parts *Lube Supplier impact*—You will now buy about 80% less oil

Is anybody else following this strategy?

YES—too many to list here, but reference letters can certainly be provided By-pass filtration is very common in Europe and some OEM's provide it standard

How much does it cost?

See the next pages for the financial implications which are very positive and do not even account for longer asset life.

Enhanced Lubrication Strategy

Evaluation Factors or Variabl	es:		Supporting Statistics and Highlights of Interest
Number Of Vehicles	30		170 oil changes per year <i>currently</i> fleet wide
Fluid Capacity in gal./veh	10.0 gal.		\$60 Cost for oil at vehicle's oil change
Oil Cost per gal. (currently)	\$ 6.00		\$82 Cost for oil & standard filter
Full Flow Filter Costs (currently)	\$ 22.00		\$30 Cost for labor to change oil (fully burdened)
Oil Change Interval in miles (now)	15,000mi.		\$3 Waste oil disposal fee per change per vehicle
Annual Miles driven/veh. (avg.)	85,000mi.		\$115 Total current cost for each oil change
\$ fuel economy expected to improve	2.0%		\$1,103,365 Annual Cost for Fuel currently at 5.2 mpg & \$2.25 per gal.
Hourly Labor Rate with fringe	\$ 30		\$22,067 Savings with 2% (likely better) fuel economy improvement
Hours per oil Change (currently)	1.00 hrs		\$12,180 Total parts and supplies needed for <i>By-Pass Filtration</i>
Waste Oil Disposal Fee /gal.	\$ 0.25		\$4,667 Total amount of <i>Power Up</i> need for 1st year
Average Cost of diesel per gal.	\$ 2.25		1,133 Less Oil used/yr.— <i>Environmentally GREAT!</i>
Current fleet mileage (avg.)	5.2 mpg		67% Less Oil used/yr.—Environmentally GREAT!
Currently oil analysis cost per test	\$ 10.00		9,808 gal. Less Diesel Fuel used/yr.—Environmentally GREAT!
By-Pass Filtration System:			
Filtration System Hardware Cost	\$ 389	Other Cost Sa	avings: less wear on significant engine components resulting in
By-Pass Filter Cost each	\$ 9	longer engine	life; less spillage of used oil; less "oil soak" used; less overages
Better oil analysis (could be less frequent)	\$ 18	on oil change i	intervals; less vehicle downtime; perhaps less vehicles needed for
Time to install by-pass filter housing	30 min.	same work loa	d; less chance for errors; and more productive shop workers.
Time to clean full flow & change by-pass filter	20 min.		
Oil Change Interval Extended by	3.0 times	or 45,000 mi.	or in reality, not until Oil Analysis data calls for it
Add Pack Enhancement cost/gal	\$ 172	Note: Oil Ch	pange intervals are determined by oil analysis not time nor miles
First Y	ear Ana	lysis with	30 vehicles in the Fleet
Current Costs:		∥ By-Pass Fil	tration & Cleanable Full-flow Filter Proposed Costs:
By-Pass Filter Housing assembly	0	\$ 12,180	By-Pass Filter Parts for all vehicles
Labor to install by-pass filters	0	\$ 450	Labor to install 30 by-pass filters at 30 minutes each
New Oil Cost/yr for 1700 gal of oil	\$ 10,200	\$ 3,400	Oil completely changed as determined by oil analysis or 567 gallons (est.)
Add Pack Enhancement	0	\$ 4,667	Power Up Additive at 5% when changed and 2% of crankcase with new filter
Full Flow Filter Cost	\$ 3,740	\$ 1,700	Cost of cleaning Full-flow portion of filter at normal change intervals
By-Pass Filter Costs	0	\$ 1,530	by-pass cartridge changed when you normally changed oil before
Waste Oil Disposal Fee 5.7 per veh per year	\$ 425	\$ 142	only 1.9 disposal fee(s) per year per vehicle
Oil analysis Cost doing 5.7 per veh. per yr.	\$ 1,700	\$ 3,060	Better Oil analysis Cost (tested at same frequency as before)
No Fuel saving via less friction	0	\$ (22,067)	Power Up Friction Reduction & clean oil yields 2% better mpg
Labor Cost for 170 oil chnages per year	\$ 5,100	\$ 618	57 complete oil changes + 113 by-pass filter changes & cleanings
Total Cost per Year	\$ 21,165	∥ \$ 5,679	Total Cost for First Year
1st Year Savings =	\$	15,486	This is saves 1133 gal. of oil or 67% of your oil in this year!
Break even Point	3.2	months	Note: Mileage up from 5.2 to 5.3 mpg

Second Year Analysis

Currently:		By-	Pass Fill	ration & Cleanable Full-flow Filter Proposed Costs:
By-Pass Oil Housing assembly	0		0	By-Pass Parts for all vehicles
New Oil Cost/ yr	\$ 10,234	\$	1,800	Oil completely changed once per year
Add Pack Enhancement	0	\$	3,119	Power Up Additive at 5% when changed and 2% of crankcase with new filter
Full Flow Filter Cost	\$ 3,740	\$	1,700	Cost of cleaning Full-flow portion of filter at normal change intervals
By-Pass Filter Costs	0	\$	1,530	changed when you used to change oil (every 15000 miles)
Waste Oil Disposal Fee	\$ 425	\$	142	only one disposal fee per year per vehicle
Oil analysis Cost (at each change)	\$ 1,700	\$	3,060	Oil analysis Cost (test every 30000 mi.)
Fuel saving via less friction	0	\$	(22,067)	Power Up Friction Reduction yields better mpg
Labor Cost involving oil	\$ 5,100	\$	2,600	one oil change/yr + by-pass filter changes
Total Cost per Year	\$ 21,199	\$	(8,117)	Total Cost for Second and Subsequent Years
2nd Year Savings =	\$	29,316		\$ 2,443 per month average savings
Total Cost after Two Years	\$ 42,364	\$	(2,438)	or \$81 per vehicle per month
SAVINGS each year thereafter	\$	29,316		Plus Longer Engine Life with better lubrication

Lease Plan with Option to Purchase

\$12,180.00	Cost of By-pass Filters
(\$1,218.00)	10% down payment
\$10,962.00	Balance to be leased
(\$516.02)	24 month lease payment per month (at 12% interest
(\$17.20)	Average cost ver vehicle per month
(\$300.00)	Amount to convert to purchase at end of lease
(\$13,902.47)	Total cost over lease period to own filters

10 Month Cash Flow Analusis

Methodology:

- » Annual Power Up bought in 4 batches
- » Annual Savings are distributed evenly throughout the year
- » Labor savings not illustrated because hours used for more productive work
- » Value of longer useful life and parts savings not illustrated
- » Difference in cost of oil analysis not illustrated

	month 0	1st month	2nd month	3rd month	4th month	5th month	6th month	7th month	8th month	9th month	10th month		
Down Payment	(\$1,218.00)												
Monthly Payment		(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)	(\$516.02)		
Power Up		(\$3,045.00)			(\$3,045.00)			(\$3,045.00)			(\$3,045.00)		
Oil savings	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67	\$566.67		
Full-flow filter savings	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67	\$311.67		
Waste Oil savings	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61	\$23.61		
Diesel fuel savings at 2%	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94	\$1,838.94		
Monthly Cash IN/OUT	\$1,522.89	(\$820.13)	\$2,224.87	\$2,224.87	(\$820.13)	\$2,224.87	\$2,224.87	(\$820.13)	\$2,224.87	\$2,224.87	(\$820.13)		
Cumulative Cash Flow	\$1,522.89	\$702.75	\$2,927.62	\$5,152.49	\$4,332.36	\$6,557.22	\$8,782.09	\$7,961.96	\$10,186.83	\$12,411.69	\$11,591.56		

Clean Oil Reduces Engine Fuel Consumption

by Jim Fitch

In the July-August issue of Machinery Lubrication magazine, my column discussed the important role of lubrication on energy conservation and environmental protection. The more I delve into this subject, the more I discover the pronounced impact lubrication has on energy and the environment. A case in point is the impact of clean oil on fuel consumption and emission in engines.

There are many ways that a lubricant could fail to deliver fuel-efficient engine performance. Many of these are due to formulation issues as opposed to transient properties of the lubricant in service. For instance, there were significant advances in energy conservation when switching from GF-2 to GF-3 (international quality designation for gasoline engine lubricants) in 2001 (Figure 1).

Figure 1. GF-3 and GF-2 Comparison Diagram

When a lubricant degrades, it forms reaction products that become insoluble and corrosive. So too, the original properties of lubricity and dispersancy can become impaired as the lubricant ages and additives deplete. Much has been published about the risks associated with overextended oil drains and the buildup of carbon insolubles from combustion blow-by.

However, surprisingly little has been said about the impact of fine abrasives in a lube oil as it relates to fuel economy over the engine's life. One can imagine numerous scenarios in which solid abrasives suspended in the oil could diminish optimum energy performance. Below is a list of several scenarios:

Antiwear Additive Depletion. High soot load of crankcase lubricants has been reported to impair the performance of ZDDP antiwear additives. Some researchers believe that soot and dust particles exhibit polar absorbencies, and as such, can tie-up the AW additive and diminish its ability to control friction in boundary contacts (cam nose, ring/ liner, etc.).

Combustion Efficiency Losses. Sooner or later, wear from abrasive particles and deposits from carbon and oxide insolubles will interfere with efficient combustion in an engine. Valve train wear (cams, valve guides, etc.) can impact timing and valve movement. Wear of rings, pistons and liners influences volumetric compression efficiency and combustion blow-by resulting in power loss. As has been previously reported in this magazine, particle-induced wear is greatest when the particle sizes are in the same range as the oil film thickness (Figure 2). For diesel and gasoline engines, there are a surprising number of laboratory and field studies that report the need to control particles below ten microns. One such study by GM concluded that, "controlling

Frictional Losses. When hard clearance-size particles disrupt oil films, including boundary chemical films, increased friction and wear will occur. One researcher reports that 40 to 50 percent of the friction losses of an engine are attributable to the ring/cylinder contacts, with two-thirds of the loss assigned to the upper compression ring.² It has been documented that there is an extremely high level of sensitivity at the ring-to-cylinder zone of the engine to both oil- and air-borne contaminants. Hence, abrasive wear of the ring/cylinder area of the engine translates directly to increased friction, blow-by, compression losses and reduced fuel economy.

Viscosity Churning Losses. Wear particles contribute to oxidative thickening of aged oil. High soot load and/or lack of soot dispersancy can also have a large impact on oil viscosity increases. Viscosity-related internal fluid friction not only increases fuel consumption but also generates more heat that can lead to premature degradation of additives and base oil oxidation.

Stiction Losses. Deposits in the combustion chamber and valve area can lead to restriction movements in rings and valve control. When hard particle contamination agglomerates with soot and sludge to form adherent deposits between valves and guides, a tenacious interference, called stiction, results. Stiction causes power loss. It causes the timing of the port openings and closings to vary, leading to incomplete combustion and risk of backfiring. Advanced phases of this problem can lead to a burned valve seat.²

Component	Oil Film Thickness (microns)				
Ring-to cylinder	3.0 - 7				
Rod bearings	0.5 - 20				
Main shaft bearings	0.8 - 50				
Turbocharger bearings	0.5 - 20				
Piston pin bushing	0.5 - 15				
Valve train	0 - 1.0				
Gearing	0 - 1.5				

Diesel Engine Oil Film Thickness

Figure 2. Particle-induced Wear is Greatest when the Particle Sizes are in the Same Range as the Oil Film Thickness

- 🔺 New Engine
- 12,000 Mile Oil Drain Test Length 300,000 Miles
- 25,000 Mile Oil Drain Test Length 250,000 Miles 10% Reduction in Oil Sump Volume

25,000 Mile Oil Drain Test Length 250,000 Miles 10% Reduction in Oil Sump Volume

Figure 3 shows an example of how increased engine wear, in this case due to overextended oil drains, contributes to power loss in the engine. At 2100 rpm, the severely worn engine horsepower at the wheels decreased from 365 hp to less than 300 hp (18 percent). Loss of horsepower translates directly to losses in fuel economy.³

A bus engine fuel consumption study by G. Andrews, et al. of the University of Leeds (Table 1), provides evidence of the benefit associated with cleaner oil on fuel economy in an actual road trial.⁴ It was noted that the Cummins engine's **fuel efficiency increased 2 percent to 3 percent** when a six-micron by-pass filter was used along with a full flow filter. The study spanned 50,000 miles of service. The fuel consumption was calculated based on detailed fuelling records from the fleet. In a similar study reported by the same authors using by-pass filtration, a **5 percent to 8 percent reduction in fuel consumption** was achieved on a 1.8 liter Ford passenger car IDI diesel engine.

A study reported by J. Fodor and F. Ling of the Research Institute of Automotive Industry-Budapest and published in Lubrication Engineering magazine (Table 2) found a sharp improvement in fuel economy in a six-cylinder diesel engine fitted with improved filtration. By reducing oil contamination by 98 percent, not only was a nearly **5 percent reduction in fuel consumption** achieved but wear and friction were reduced by 93 percent and 2.9 percent respectively.⁵

Waste Stream Emissions

When the engine consumes oil, due primarily to contaminant-induced wear, oil enters the combustion chamber, burns with the fuel, and is pushed out with exhaust gases as particles and volatile hydrocarbons. New mineral-based lubricants have a more volatile light-end fraction and are more prone to hydrocarbon emissions. The level of exhaust emissions increases considerably over time

Figure 4. Off-road/tractor Particulate Emissions Predictions

Unlike a new engine, the lubricating oil is a dominant contributor to particulate matter (PM) emissions in aged engines. The obvious strategy to control/reduce hydrocarbon emissions is to reduce oil consumption. ...

... This, of course, points to a strategy of reducing abrasion and wear. According to projections by Barris of Donaldson Co. (Figure 4), after **12,000** hours of service, an off-road diesel engine can produce nearly six times more exhaust emissions due to wear associated with particles and other causes.⁶

Crankcase Oil Particle Counts

Good environmental stewardship is everyone's responsibility. We all benefit from cleaner air and a safer environment. In addition, the financial impact that comes from reduced fuel consumption alone can be substantial. Perhaps it's time for OEMs and users alike to begin revisiting contamination control practices, including filtration, associated with internal combustion engines.

If clean oil is important to control wear, reduce fuel consumption and emissions, perhaps it's also time for users to begin asking their laboratories to begin reporting particle counts and ISO Codes of used crankcase oils. **Remember, if it's important, we measure it - correctly. What gets measured gets done.**

Jim Fitch

References

1. Staley, D.R. (1988). "Correlating Lube Oil Filtration Efficiencies with Engine Wear". SAE Truck and Bus Meeting and Exposition (Paper 881825).

2. Madhavan, P.V. and Needelman, W.M. (1988). "Review of Lubricant Contamination and Diesel Engine Wear". SAE Truck and Bus Meeting and Exposition (Paper 881827).

<u>3. McGeehan, J. (2001, September-October). Uncovering the Problems with Extended Oil Drains. Machinery Lubrication magazine (www.machinerylubrication.com), pp. 24-29.</u>

4. Andrews, G.E., Li, H., Jones, M.H., Hall, J. Rahman, A.A. and Saydali, S. (2000). "The Influence of an Oil Recycler on Lubricating Oil Quality with Oil Age for a Bus Using In-Service Testing". SAE 2000 World Congress (Paper 2000-01-0234).

5. Foder, J. and Ling, F.F. (1985, October). Friction Reduction in an IC Engine through Improved Filtration and a New Lubricant Additive. "Lubrication Engineering". pp. 614-618.

6. Barris, M.A. (1995). "Total Filtration: The Influence of Filter Selection on Engine Wear, Emissions and Performance". SAE Fuels and Lubricants (Paper 952557).

Please reference this article as:

Jim Fitch, "Clean Oil Reduces Engine Fuel Consumption". Practicing Oil Analysis Magazine. November 2002

Fuel Economy Data (using an On-board-Computer)

Test Status	Before Power Up April 29th		With Power Up August 17th		Improvement
Distance via computer log	10,647		25,517		
Fuel Used	1,844.5		3,995.5		
Idle Time	17.6%		13.6%		
Avg. Mileage	5.77 mpg		6.39 mpg		+ 10.7%
Avg. Mileage (while moving)	5.94 mpg		6.45 mpg		+ 8.6%

Dynometer Load Tests

Test Status	Wheel HP	% of Change in Wheel HP	Turbo Boost Pressure (in-H₂O)	Coolant Temp (°F)
Before Power Up	395		56	214° (and climbing)
After Power Up (Load test #1)	397	+ 0.8%	54	198°
After Power Up (Load test #2)	400	+ 1.3%	54	198°

Sample ID: Equipment Co Equipment Nai Equipment Are Lubricant Total Hours: Hours On Oil:	20765 de: 785-MINING CYLINDER me: 785-MINING CYLINDER e: CCECO CHEVRON RYKON 32 0.0 0.0, On Filler: 0.0		CCECO	LAB AND FI	LTRATION forth Lavee Road yallup, WA 98371 ac: (253)545-2490	FLUID ANAI REPORT	VSIS NORMAL Sampled: 15-FEB-04, 03:44 pn Tested: 23-SEP-04 Reported: 23-SEP-04
Sample Comm Particles Cour Particles > 5 Particles > 1 The viscosit Water Y or 1 Sample con USO Target I	nt ISO Code is 14/12. iµm (121.40) is in the NOR/ ISµm (21.10) is in the NOR/ y at 40 deg. Celsius (30.900 N: Water Present is NO. tains clear material, silica, a well has been met.	MAL range. MAL range. ssl.) is within th and metal.	he NORMAL range.			Generally Record Up to Pressure (PSI) 3000 Geor pumps 17/15 Geor metures 18/15	mmended ISO Code Range O Over These codes are only recommended 3 3000 5 16/14 5 17/14 mmended ISO Code Range
40.00 35.00 cst. 30.00 25.00 20.00 17-CCT-02	Viscosity at 40°C Viscosity: 30.90cst.	Crit Caul Crit Crit 26-FEB-04	0.01 0.1 >2µm = 1218.10 >3µm = 371.50 >5µm = 121.40 >10µm = 36.90 >15µm = 21.10 >25µm = 7.10 >50µm = 0.80 >10µm = 0.20	SC Particle Count ISO Code: 14/12 1 10 100 1k 10k 1	00k 1M 10M	Vane pumps 17/14 Vane motors 17/14 Variable vane pumps 15/13 Piston pumps 15/13 Piston motors 16/13 Radial piston motors 17/13 Cam wave motors 15/13 Sol. Dir. valves 18/15 Prop. Dir. valves 15/12 Servo valves 14/11 Press. comp. flow entril. 15/13 Hydrostatic trans. 14/12 Cylinders 18/15	16/13 safety, entical nature of machine 16/13 use, hours of service per day, life 16/13 use, hours of service per day, life 18/12 use, hours of service per day, life 14/12 expectancy of machinery, and 14/12 plense consult the manufacturer 16/12 of your machinery for further 16/12 recommendations. 16/12 16/12 16/12 of your machinery for further 16/12 16/12 16/12 the test results are for 16/12 13/10 CCECO Lab & Filtration 13/10 use of information gained 11/14 from any test result.
Sample Date 20765 15-1 20615 17-1 20592 06-1 20437 09-1	e Hours ISO Code FEB-04 0.0 14/12 SEP-03 0.0 16/13 MAR-03 0.0 18/15 NOV-02 0.0 22/18	150 >2jim 1218,10 1672.00 8022.80 4 38527.00 30	<u>2 Particle Count - Table</u> <u>>3µn >5µm >1</u> 371.50 121.40 1 1491.10 618.00 1 1629.10 **2443.30 75 2559.00 **22494.00 704	10µm >15µm >25µ 36.90 21.10 7.1 72.30 65.40 16.0 56.30 **279.00 59.3 42.10 **1772.70 192.4	n >50µm 0 0.80 5 2.10 5 5.20 0 20.40	>100μm Sample 0.20 20765 0.00 20615 0.00 20692 0.60 20437	Water Y or N - Table le Date Hours Water Present 5 15-FEB-04 0.0 NO 5 17-SEP-03 0.0 NO 2 05-MAR-03 0.0 NO 7 09-NOV-02 0.0 NO
0. 1111 111	<u>TARGET ISO 16/13</u> 4.0 5.0 6.0 1 1 1 1 1 1 1 1 1	+ Image No. Hagnification Position	20765-01 Otras: 15-FED-04 100a Storistri: 0100 Density: 40 50 60 1 1 1 1	Image No.: 30615-01 Date: Magnification: 100x Size (p. Decs); Position: 0 0 80 4.0 5.0 11 111 111 111 111	Photographic Im 17-SEP-03 M Pi 0 M P 50 8 11 11 11 11 11	ago History aga Ma: 20923-01 Dete: 08-3 spritestion: 1000 Stergart 0 to second and the second second second person 0 440 50	WAR-03 Image No. 20437-01 Date: 0)-40V-02 0 Magnification: 100x Size-(unit 0 to 0) Position: Donstry: Donstry: 60 80. 2.0 50 60 1000 Hitti 11000 10000 10000 10000