Q
 info0 rm a

 AÑO 2021. EDICIÓN 1. INFORMACIÓN DE INGENIERÍA PARA LA INDUSTRIA DE LA RADIODIFUSIÓN Y TELECOMUNICACIONES

19 de Septiembre de 1974 se fundó la Asociación Mexicana de Ingenieros y Técnicos en Radiodifusión, A.C. (AMITRA) Celebramos Nuestro 47 Aniversario.

Mesa Directiva de AMITRA saliente periodo 2019-2021. (Sentados de la D), los ingenieros Miguel Ángel Méndez López, Segundo Vocal, Francisco Bedolla Saldaña, Secretario, Julio César López García, Presidente, Sergio Morales, Prosecretario, Roberto Galicia Salazar, Protesorero y Alejandro Zamora Ortiz, Segundo Vicepresidente, de pie: Ucaima Acuña González, Primer Vocal, Jorge Ortega Reyes, Primer Vicepresidente, Gilberto García Salguero, Tercer Vocal y Jesús Canela Escamilla, Tesorero.

Asociación Mexicana de Ingenieros y Técnicos en Radiodifusión, A.C.

El 19 de septiembre de 1974, se fundó la Asociación Mexicana de Ingenieros y Técnicos en Radiodifusión A.C. AMITRA: Los ingenieros fundadores, sentados: 1 Modesto Mario Huerta Coria, 2 Serafín Carrasco Suárez, 3 José Lozano Ramírez, Primer Presidente de 1975 a 1977, 4 Ignacio Díaz Raigosa. De pie de Izq., a der.: 5 Joaquín Durand, 6 Manuel Mejía Palacios, 7 Jesús Chávez Chávez, 8 Delerand, 9 Jorge García Rangel, 10 Eusebio Mejía Maldonado, 11 Jesús Carranco Ramírez, 12 Luis Vázquez Ortiz, Presidente en 1981-1983, 13 Antonio Serhant, 14, 15 Antonio López García, 16 José Rodríguez Tejeida, 17, 18 Leonardo Dircio Alcaraz y 19 Mauro Velázquez Nieto. No aparecen en la fotografía y son socios fundadores: Emilio Rodríguez Mancilla, Fernando Maldonado López, Francisco Torea Cruz, Melchor Huerta Martínez, Presidente en 1977-1979, Antonio Vieyra Collado y Toribio Ricárdez Pérez.

ASOCIACIÓN MEXICANA DE INGENIEROS Y TÉCNICOS EN RADIODIFUSIÓN A.C.

AMITRA PUEBLA

Presidente: Enrique Martínez Marín Tesorero: Ricardo Santillana Morales
Secretario: Sergio Ubaldo Gerónimo

OFICINA AMITRA:

Asistente de Dirección: Teresa Hernández

CONSEJO EDITORIAL

Director: Julio César López García Editor: Claudia Mendiola Ibarra
Concepto Gráfico / Diseño /
Imagen / Zoom del Congreso: Monica Dircio Palacios y Andrei Dircio de PixelKode
Fotografía / Diseño Gráfico: Claudia Mendiola Ibarra Archivo Fotográfico: Boletín Radiofónico-TV Asesores Técnicos: Antonio López García y Sergio Rojano Sahab

AMITRA INFORMA es la revista que comunica de la Asociación Mexicana de Ingenieros y Técnicos en Radiodifusión A.C., Dirección de Oficina: Eugenia 240, Vértiz Narvarte, Benito Juárez, 03020, Ciudad de México. Teléfono: 555609 0567, www.amitra.mx
El contenido de los artículos firmados es responsabilidad directa del autor. Se autoriza la reproducción total o parcial siempre que se cite a la fuente.

AÑO 2021 • EDICIÓN 1 DIGITAL • OCTUBRE

CONTENIDO

14

Nuevo Presidente del Consejo Directivo de la CIRT.

Breve Historia Tecnológica de La Radio en México.

AMITRA XLIV Congreso, Inauguración.

Reconocimientos.
Carta Editorial.

RadioAPI: la llave de acceso al ecosistema digital.

Procesamiento de Audio.
"El colapso del contexto".
La Evolución del Radioescucha: ¿Cuáles son las oportunidades?

Radioactiva Tx, la primera estación de radio verde en México.

Internet a través de la señal de Televisión.

Almacenamiento de Energía Renovable.

Entrega de Reconocimientos a Ingenieros de AMITRA.

Enlaces de datos punto a punto en radiodifusión.

Overef
 INTERNACIONAL

Te podemos ayudar a integrar cualquier proyecto en:

Conectividad
Audio Profesional

Sonido en Vivo

Audiovisuales
Iluminación

UN VERSAL AUD 0
NEEUTRERER

info@varinter.com.mx

IInformes, demostraciones y ventas: Tel. +52 (55) 91832700 \square /Vari

\triangle (0) Youluhe

Expresidentes de la Asociación Mexicana de Ingenieros y Técnicos en Radiodifusión, A.C. desde su fundación

\square

José Antonio García Herrera, Nuevo Presidente del Consejo Directivo de la CIRT

ciudad de México. - Los concesionarios de radio y televisión integrados en la CIRT eligieron el 24 de agosta de 2021 a los integrantes de un nueva Conseja Directiva que serápresidido por José Antania García Herrera, Director Corparativo de Grupo Capital Mediay Notaria Pública 115 del Estada de Quintana Roo.

El nuevo Presidente de la CIRT agradeció todas las muestras de afecto y unidad que se manifestaron durante la Asamblea, mostrando así el gran compromisa de esta Industria, privilegianda los intereses de la misma y poniendo siempre en primer lugar "LA UNIDAD".

Además, señaló: "Es un gran honar para mí trabajar en compañía de todala lndustria; esto гepresenta un enorme compromisa y una alta responsabilidad el hacer valer nuestros legítimos derechos y fortalecer más aún la presencia de nuestro diario quehacer como factar de progreso en nuestro país."
"Hay muchos temas por los cuales hay que trabajar, por lo que invito a tada la Industria a participar en la integración de las líneas de acción a seguir en temas como la ilegalidad de las frecuencias; la práxima licitación y la recuperación del mercado después de la pandemia que hapadecido nuestra sociedad".

Así misma, la Asamblea de la CIRT, también rennvó al Consejo Consultiva, que a partir de este martes estará encabezado por Adrián Laris Casas, quien es Directar de El Heralda Radio y fue presidente de la Asociación de Radio del Valle de México, además de contar con el Premio Nacional de Lacución y Caracal de Plata.

En su intervención agradeció el apayo a su proyecto y señaló que trabajará de la mana con el Presidente del Conseja Directiva, además de reforzar los vínculos con las delegaciones estatales de la CIRT.

El Consejo Directiva se integra por un presidente, seis vicepresidentes, tesorera, secretario y vocales de cada uno de los 32 estados de la República Mexicana, quienes se reúnen dos veces al año en Sesiones Drdinarias.

En una asamblea realizada a través de una conexión digital en la que las principales empresas de radiodifusión mexicanas reiteraronla cohesión característica de la Cámara Nacional de la Industria de Radio y Televisión que integra y representa más de IVOD emisaras y canales comerciales.

Fuente: CIRT. Fotos cortesía CIRT.

Con más de 25 años de experiencia como abogado de la industria de la radiodifusión, JoséAntonio García Herrera fue nombrado por la CIRT como el nuevo presidente del Consejo Directivo y Adrián Laris Casas del Consejo Consultivo.

Presidente saliente José Luis Rodríguez Aguirre, concesionario de Respuesta Radiofónica en Querétaro, electo el 3 de mayo de 2018, Francisco "Pancho"Aguirre Gómez, radiodifusor de Radio Centroy La Octavay el nuevo presidente de la CIRT, José A. García Herrera.

BREVE HISTORIA TECNOLÓGICA DE LA RADIO EN MÉXICO

Por Ing. Ernesto Reyes Ramírez, Director de Ingeniería CIRT.

Intraducción

La gran revalución tecnológica de las últimas décadas del siglo XX, particularmente en la rama de las telecomunicaciones fue trascendental en el gira actual tecnológico que se ha dado en el mundo.

Con los últimas adelantas tecnológicos en la radia, además de ser producto de los avances científicos, su perfeccionamiento se debe a la creciente y abrumadora presión de competencia, tanta externa como interna.

Al principio fue un juguete

La radiodifusión sanora es el resultado de una serie de acontecimientos científicos ocurridos durante el sigla XIX y principio del siglo XX. Los trabajos de grandes investigadores como Alessandra Valta en 180 Con con praducción de carrientes eléctricas con baterías.

Hans Christian Dested quien al hacer circular corriente eléctrica por un alambre notó que provocaba una desviación en la aguja de una brújula, descubriendo que la electricidad praduce magnetismo.

André Marie Ampère, que inventá la babina de solenaide para producir campos magnéticos y formulóla tearíade que los átomos de un imán se magnetizan por medio de corrientes eléctricas muy pequeñas que circulan en ellas.

Gearg Siman Dhm quien formulála ley que lleva su nombre y que relacionalacorriente, el voltaje y la resistencia.

Michael Faraday que demostró que un campo magnético cambiante podía producir una corriente eléctrica.

James Clerk Maxwell que publić́la primera tearía unificada de electricidad y magnetisma; de igual forma postuló que la luz era de naturaleza electromagnética y que la radiación electromagnética en atras longitudes de onda debía ser posible.

Heinrich Hertz verifić́ la tearía de Maxwell, generó y detectó ondas de radio (ondas hertzianas) con una longitud de onda de 5 metros. También demostrí que la polarización, la reflexión y la refracción de las ondas de radia eranidénticas a las de la luz.

Posteriormente, el primer radiotransmisor y radiorreceptar práctica fue inventado en 1894 por Guillermo Marcani quien aprovechó los principios de todos los estudios anteriores como el sistema de chispa de Hertz para enviar mensajes a través del espacio. De esta forma en 1839 logró conectar mediante señales de radio las costas inglesas y francesas. En ese entonces se le conocía coma"telegrafía inalámbrica".

Reginald Fesseden, físico canadiense, fue quien hizo posible en 1906, el envío de la vaz a distancia y sin cable, al utilizar, en lugar de un transmisar de chispa rotativa, un transmisar de onda continua que producía una onda senoidal pura, de una sola frecuencia, mucho más eficiente para transmitir audia.

Marconi al agregar la sintonización, una antena grande, sistemas de tierra, y longitudes de onda más largas pudo enviar señales a grandes distancias, lagrando así en 1907 un enlace trasatlánticopermanente.

No obstante, fue Lee De Forest quien perfeccianó el sistema de Marconi. De Farest patentó un detector al que llamó "Audión" que es considerado el primer Triada, que permitió una recepción más sensible de señales inalámbricas facilitanda la recepción y emisión de mensajes. Con la finalidad de papularizar aún más el nuevo media, De Forest transmitió en 1910 una actuación en directo de Enrica Caruso en la Metrapalitan Dpera de NuevaYark.

Hasta ese momenta la radio se utilizaba como un auxiliar en actividades relacionadas con la marina o la naciente aviación. David Sarnoff quien se habíadesempeñadoen las estaciones de Marconi en barcos y puestos en diversos puertos, le propuso en 1915 a 1915 a Edward Julian Nally (Presidente de la General Marconi y posteriormente Presidente de Radio Corporation of America), desarrollar la primera empresacomercial de radia.

En su escrito, Sarnoff señalá: "He concebido un plan de desarrollo que convertiría a la radio en un "artículo para el hogar", en el mismo sentido en que puede serlo un piano o un fonógrafo. La idea es llevar música al hogar por transmisión inalámbrica..

Nally no aceptó debido a laprimera guerra mundial.

Desarrollo

Fue la estación KDKA, de la Westinghouse, la primera emisara con permisa aficial de transmisión en las Estados Unidas de América, inicianda aperaciones el 2 de naviembre de 1920. LaKDKA transmitió informes sobre los resultados de la elección presidencial, entre Warren G. Harding y James M. Cox de ese año.

En México, los primeros trabajos de telegrafía inalámbrica que se realizaron a principios del sigla XX, fueron de carácter experimental. Algunas se efectuaron en estaciones radiotelegráficas del Estada y otras por entusiastas interesados en los adelantos tecnológicos de la época.

El 27 de septiembre de 1921, se realiza la primera emisión radiofónica en la capital, desde el Teatro Ideal hasta el Palacio Nacional, Actual Palacio de Bellas Artes; salvando una distancia de 300 metros en línea recta. Esta emisión venía a reforzar la predicción, anteriormente mencionada, de David Sarnoff, al pramover la venta de los receptares. Comenzó el auge en radiodifusión, surgiendo emisaras y hacienda la praducción de receptores insuficiente para satisfacer su demanda.

La primera transmisión radiofónica mexicana en farma se realizó el 9 de actubre de 1921, por Constantina de Tárnava, quien utilizó la estación TND (Tárnava-Notre Dame) con una potencia de 50 watts. La emisara de Tárnava creció al obtener una licencia para орегаг ехрегimentalmente; se fue transformanda, primera como emisara comercial, luego como la XEH de Monterrey. El éxito de Tárnava fue el de vender: primero, aparatos receptores y en segunda lugar publicidad, es decir tiempo aire. Tárnava, Sarnoff y muchos atros veían a la producción y venta de aparatos receptares como el sustenta financiero de tada empresa radiofónica; sin embargo, sólo algunos contemplaron la aparición de atra de las alternativas que hiza pasible la expansión radiofónica: la publicidad, es decir la venta de espacios en radio para financiar los gastos operativos de una emisora.

La CIRT recanace a la XEH-AM, como la primera estación de Radio en México. A finales de 1921 había cuatro radiodifusoras experimentales en México.

En 1930 surge la XEW que marca una nueva etapa en la industria, por su programación, alcance y potencia, convirtiéndose en toda una tradición dentro de la radio del país al impulsar a la radiadifusión comercial a su consolidación durante las das décadas siguientes. Es precisamente en 1930 cuando la tecnología en radiocomunicación evoluciona de manera importante; los ingenieros mexicanos rápidamente asimilaron la técnica e introdujeron adaptaciones para un mejar usa del equipo con el que contaban.

En la década de los treinta, en los Estadas Unidos de América se cantinuó con los trabajos para mejorar la calidad de la transmisión de Radio. En 1933 Edwing Armstrong patentó la "Frecuencia Madulada" a FM. La FM consiste en variar la frecuencia de la señal portadora, en contraste con la AM, que la frecuencia es fija y la que varíaes la amplitud.

En el Artículo de Armstrong titulada "Un métada para reducir las perturbaciones en las señales de radio mediante un sistema de madulación de frecuencias", publicado en el Proceedings del Instituto de Ingenieros de Radio de las Estadas Unidas de América, en mayo de 1936, el mismo Armstrong señala como resumen:
"Se describe un nuevo método para reducir los efectos de todo tipo de perturbaciones. Las disposiciones de transmisión y recepción del sistema, que hace uso de la modulación de frecuencia, se muestran en detalle. Se discute la teoría del proceso mediante el cual se obtiene la reducción de ruido y se da cuenta de la realización práctica de la misma en las transmisiones durante el último año desde la estación experimental de la National Broadcasting Company en el Empire State Building en la ciudad de Nueva York hasta Westhampton, Long Island y Haddonfield, Nueva Jersey. Finalmente, se reportan los métodos de multiplexación y los resultados obtenidos en estas pruebas.

Además de la alta resistencia a la interferencia por estática, una de las ventajas de la FM sobre la AM es un mayar ancho de banda en el audio, que proporciona mayor fidelidad en los sonidos transmitidos.

En el libra "La Suerra de las Dndas", el autar señala que, hasta principios de la década de los cuarenta, era difícil saber cuántos aparatos de radio existían en México. Lo anterior era un dato importante y necesario para los concesionarias, quienes podían utilizarla como herramienta de promoción y para el establecimienta de las tarifas de venta. Era también fundamental dar a conacer esta información al anunciante, pues conaciendo el tamaña y composición de la audiencia, podía comparar la rentabilidad de su inversión en relación con atras medios publicitarios.

Es precisamente en la década de los cuarenta, cuanda hace su aparición el transistor semiconductor, inventado en 1948, mismo que da arigen a un cambio sumamente drástica en la industria electrónica. Tan solo 6 años después de su aparición, el transistor es incorparado en los radiarreceptores.

A finales de los añas cincuenta y principios de los sesenta, comienza el auge de los equipos transistarizados, permitiendo la fabricación de equipos más pequeños, ligeras, que consumen menas energía y con una construcción más resistente, lo que añade potencial al mercado radiofónico.

En contraste con los primeros años la década de los cincuenta, mientras el transistor permitió mejorar los equipos, no fueron buenas noticias para la fabricación de estos en nuestro país. El ingeniera Jasé de la Herrán ha comentado que la aparición del transistor afectó a las fábricas mexicanas de radiorreceptores, así coma la fabricación de los equipos de transmisión ya que el 90\% de los equipos de alta patencia se construían en nuestra país. Lo anteriar, según el ingeniero de la Herrán, debido a que no se había realizado el esfuerzo de divulgación necesaria porque había cambiado totalmente latecnología de radio recepción.

La primera estación de FM que se instaló en nuestra país fue en la Ciudad de Méxica con las siglas XHFM en 1952 que aperaba en la frecuencia S4.1 MHz. Posteriormente cambíć de frecuencia a 93.7 MHz y de siglas a XEJP-FM. El crecimienta de la FM fue lenta y en 1957 comenzaron a aperar XEDY-FM en la Ciudad de México y XETFMen Manterrey.

La innovación tecnalógica en la FM continuó y en ISGI la "Comisión Federal de Comunicaciones" (FCL) de los Estados Unidos de América, aprobó el sistema de estereafanía a ser utilizado en las emisaras de FM. Además de permitir la transmisión de subportadaras, una de las virtudes del estándar de estereafonía es que permite que los receptares manofónicos continúen recibienda la señal de FM. En nuestro país, la primera transmisión en estereafanía se realizó a través de la XEDY-FM en 1966.

Las inicios de la FM no fueron fáciles, al tratarse de un sistema que aperaba de una manera distinta y en otra banda de frecuencias, se requerían nuevas receptares. Si bien a la mayoría del público (algunos autores señalan que, al principio, la audiencia no notaba una marcada diferencia entre AM y FM) le agradaba la calidad de la FM, la falta de sintanizadores y su elevado precio frenó su desarrallo alprincipio.

En la década de los setenta, se farmó la Asaciación de Radiodifusares de Frecuencia Modulada (ARFM) con la finalidad de promover entre el público y los anunciantes a la radio en FM. Entre el pública, para dar a canacer la nueva tecnolagía con campañas promocionales y entre los anunciantes, para modificar la percepción de que la $F M$ era radio sin anuncios.

Es importante señalar, que coma parte de las trabajos que realizó la ARFM fue vender a precios papulares receptares de FM entre el público.

Enla década de los setenta se consolidó en México la F.M. En el mercado se pusieron a disposición de la audiencia, desde dispositivos adaptadores que convertían la señal de FM en AM en los automóviles, hasta los receptores que integraban las bandas de AM/FM en un mismo equipo. Por otro lado, en el mundo se desarrollaba una nueva tecnología, que vendría a lograr la bidireccionalidad enemisión de contenidos: El Internet; creadoa finales de 1969 por el profesar Leanard Kleinrock en la Universidad de Los Ángeles.

Es en la década de los ochenta, cuanda la radia FM logra superar a la AM en númera de radio escuchas, al menos en el entances Distrita Federal. La preferencia del pública par las emisoras de FM que transmiten sin ruida de estática y con mayor calidad de audio, así como en estereofonía, se convierten en las preferidas de la audiencia.

No obstante, el éxito de la FM entre la audiencia provaca una severa crisis en las emisaras de AM. Para tratar de madernizar a la banda de AM, se autoriza aéstas transmitir en estereofonía. El pracesa de adapción del estándar de estereofonía para la AM en los Estados Unidos de América había sida muy disputado, cinco compañías presentaran prapuestas, camo resultado la Comisión Federal de Comunicaciones (FCL) de ese país decide dejar que sean las fuerzas de mercado las que determinen el estándar autilizar.

En ese sentido, Méxica adapta el estándar "C-Quam" de Matarola en 1990. Sin embargo, la cantidad de receptores disponibles que pueden recibir AM estérea es tan baja que pocas emisoras utilizan esa tecnología.

En 1993 se realizan las primeras demostraciones en México del Sistema de Radio Digital (DAB) conacido coma "Eureka 147". Es bajo la Coordinación de la Cámara Nacional de la Industria de Radio y Televisión y con la participación de la Secretaría de Comunicaciones y Transportes, como se consigue transmitir desde las instalaciones de Grupa Radia Centro en el cerra del Chiquihuite, al norte de la Ciudad de México, la señal de este sistemadigital.

En 2002 la FCL de los Estados Unidas, selecciona el estándar IBCC (In Band On Channel), traducido al español como "En Banda y En Canal" para realizar transmisiones híbridas analógicas y digitales en las bandas de AM y FM, y de esta manera poder
transitar a la radio digital. Este estándar permite que las emisoras puedan continuar en las mismas bandas y en la misma frecuencia dande han sido autarizadas para transmitir, así como a los receptores con los que actualmente cuenta el pública, seguir recibiendo señales analógicas.

La tecnología de radio digital permite a las emisaras de FM transmitir en la misma frecuencia hasta cuatro canales de audia, inclusa la calidad del canal principal de audia es similar al del disco compacta, mostrar los títulos de las canciones, así coma información complementaria. Las estaciones de AM digitales pueden sacar provecho de su cobertura y la calidad del audio es similar a la de una estación de FM estéreo.

En el 2003 la CIRT realiza por primera vez en el munda la demastración simultánea de los sistemas HD Radio IBCD-FM a través de la emisara XHFAJ-FM y Eureka 147 en la Ciudad de México. Posteriormente en el 2004 se realizaron las pruebas de campo y laboratorio a ambos sistemas.

En 2005 la XEEP-AM realiź pruebas al estándar de radia digital de "Digital Radia Mandiale" (DRM) en la banda de 26 MHz. De igual forma, realizó las primeras pruebas en el mundo de transmisiones híbridas analógico-digitales con el estándar DRM. También, durante el 2005, la CIRT realizó demostraciones del sistema IBOCAM y del sistema de "Radiodifusión Multimedia Digital Terrestre" (T-DMB).

Debido al inicio de trasmisiones de radio digital en los Estados Unidos de América y con la finalidad de que las emisoras ubicadas en la frontera con ese país contaran con las mejores condiciones de desarrollo, en 2008 se permite a las emisaras mexicanas ubicadas en la zona de 320 kilómetras de la frontera norte de México transmitir con el estándar IBCC.

Es en Tijuana, B.L. a través de la XHTY-FM, dande se comienza a transmitir de forma permanente con la tecnología IBCL. Antes de 2008, la XHTY-FM ya había realizado transmisiones de prueba con la finalidad de estar lista ante una inminente adapción del estándar IBCL.

Es también en 2008 cuando se publica el Acuerda' que establece los requisitos para llevar el cambio de frecuencias de AM a FM en transición a la radio digital. Como resultado del Acuerda de 2008, alrededor de 510 estaciones de AM logran trasladarse a la banda de FM. Posteriormente en 20IG se publica un nuevo acuerdo con el cual 41 emisaras de AM pueden transitar a la FM.

[^0]En este caso, los concesionarios autorizados deberán transmitir en formata híbrido, analógica y digital bajo el estándar IBOC.

En 2DIll se adopta el estándar para la radio digital terrestre y se establece la política para que los concesionarios de la banda de AM y FM llevena cabo la transición a la tecnología digital en forma voluntaria.

En 2017 concluye la licitación IFT-4 con la cual se atargan 141 nuevas frecuencias de las cuales en 5 casas existe el compromiso de iniciar operaciones híbridas analógicas y digitales con el estándar IBCL.

A diez años de ser adaptado el estándar, la infarmación proporcionada por Xperi que es el desarrollador de la tecnología IBCC indica que, a septiembre de 2021, existen en Méxica 132 estaciones que transmiten con la tecnología IBCC a HD Radio que es el nombre comercial. Estas emisaras cubren 51.1 millones de personas que representan al 41% de la población total de nuestro país. ElG 61% de las marcas de autos ofrecen al menos un modelo con HD Radia. A la fecha hay 80 millones de receptores digitales vendidos en Canadá, los Estados Unidos de América y México.

Nuestra país ha adaptado la tecnología digital para la radiodifusín sonora. Mientras tanta, con la miniaturización de las componentes electrónicas, la evalución de la tecnología en telecomunicaciones, específicamente la telefanía mávil, así cama la modificación a la regulación a finales del siglo XX, camo el que llama paga, decenas de miles de dispositivas máviles comenzaron a formar parte de lavida de los usuarios mexicanos.

Una de los elementas can los que se integran los dispositivas máviles, el "chip de conectividad", cuenta la mayoría de las veces, con sintanizadar de radio FM, Wifi y bluetaoth. Sin embargo, no siempre el módula del radiorreceptor se encuentra activado a pesar de contar con todos los componentes para ello y en ocasiones, solo el fabricante puede activarlo enláábrica, es decir, estábloqueado.

La radiodifusión ha jugado un papel muy importante durante las situacianes de emergencia como sismas y huracanes. En esas ocasiones las redes de telecomunicaciones han llegado a colapsar, sin embargo, la radio y la televisión han permanecido al aire ayudando e informando a la población.

Al ver lo anterior y tomando en cuenta el derecho que tienen las audiencias a estar informadas, además de que el dispositivo móvil es propiedad del usuaria, por lo que ni el fabricante ni la companía de

[^1]telecomunicacianes deben bloquear una función que puede llegar a ser vital, el Instituta Federal de Telecamunicacianes (IFT) emitió en 2017 la Dispasición Técnica² que establece que el "Chip de FM" de los teléfanos inteligentes debe de ser activado desde fabrica.

La sintanización de radio FM gratuita en dispositivos móviles es pasible. Can esta Dispasición Técnica, tadas los dispasitivas vendidos en México, que tienen completa de fábrica el "hardware" de FM, deben desbloquearse para que el usuario pueda escuchar la radio sin usar datas de Internet. México se canvirtió en el primer país del mundo en contar con este tipo de ardenamiento.

Mientras tanta, en Europa, la Comunidad Europea emitió una directriz para que tados los autamáviles que se comercialicen a que se renten a partir del 2020 en esa región del mundo cuenten con sintonizador de radio digital. Es importante señalar que el estándar adaptado en Europa para la radiodifusión sanora digital es el DAB y que actualmente con modificaciones al estándar también se utiliza el DAB+.

Al ver lo anterior y con la finalidad de promover la fabricación y comercialización de radiorreceptores digitales, la CIRT juntacon el CICE, el CIME, la AMITRA, Xperi y NYCE, trabajaron en un ordenamienta, una norma voluntaria, que establece las características mínimas y funciones en los radiorreceptores en México para contar con la capacidad de recibir las señales híbridas, analógicas y de radio digital terrestre (RDT), con el estándar IBCC (en banda y en canal), También conocido coma HD Radio. La intención con ese ardenamienta es generar las condiciones para promover el usa y adapción de la RDT en la población y así fomentar el derecho de las audiencias.
 Oficial de la Federación la declaración de vigencia de la NMX-I-325-NYCE-2021 ${ }^{3}$ que como se mencionó es un ordenamienta valuntario aplicable a todos los radiorreceptores, que tengan la capacidad de recibir transmisianes híbridas, analógicas y de RDT, con el estándar IBCC de las emisaras de radiodifusín sonara, que aperan en las bandas atribuidas al servicio de radiadifusión sonora en AM y FM o en ambas.

Tanto a los radiarreceptores que son alimentados por la red del servicio de energía eléctrica, así coma los operados con baterías diseñados para utilizarse en los radiorreceptores de uso automotriz, portátiles, dispositivos máviles y receptares fijos.

Qué sigue

Para nadie es un secreta que los avances del Internet con el uso de las Redes Sociales, el "streaming" así como las técnicas de recapilación y venta de datos de los usuarias, permiten a las

[^2]empresas realizar publicidad dirigida.
La radio híbrida (personalmente me gusta más el término "Smart radio" © "radia inteligente" para no confundir can la transmisión analógica y de RDT) consiste en el uso de los metadatos que envían las estaciones de radio a través de sus transmisiones al aire así como infarmación que las mismas emisoras hacen disponible a través del Internet.

Los datos que envían las estaciones de FM analógicas a través de la subpartadara digital a RDS, así como las que transitan al formata digital utilizanda la tecnología IBCC-FM, pueden transmitir información esencial para que los nuevos receptares puedan de manera confiable identificar a la emisora al aire y realizar el enlace entre el mundo real y el virtual.

Por ejemplo, un receptar inteligente que esté instalado en un vehícula que reciba la señal de una estación con "Identificador de Programa" (PI) y que salga del área de cobertura de la emisora, podrá realizar, si así se configura, el cambio al audia que la misma emisora tiene en Internet. Pero no solo se tendrá acceso a la señal de audio en internet, también a información adicional que la emisora tenga disponible en la Web y los pasajeros podrán tener acceso a ella a través de las pantallas de los radiarreceptares e interactuar directamente conla estación.

Existen áreas de aportunidad aún para el usa de esta tecnología como el casta de la recepción mávil del "streaming", derechos de autor y confidencialidad de la información recabada, sin embargo, esta tecnología ya está disponible en algunos vehículos que se venden en los Estados Unidos de Américay Canadá.

Actualmente la "Asaciación de Radiadifusares de Norteamérica" (NABA) trabaja en un documento de recomendaciones que pueda servir de guía a los fabricantes para poder integrar la radio híbrida o radio inteligente en los futuros radiorreceptares de tal forma, que la radio siga teniendo un papel sobresaliente en los sistemas de información y entretenimiento.

A través del tiempo, la innavación tecnológica en los medios de comunicación, en especial en la radiodifusión, ha tenido un praceso histórico interesante, pues desde su origen ha estado envuelta en constantes innovaciones técnicas, cambios significativos y continuos.

La industria de la radio en México atraviesa par un entarno dinámico y cambiante. Las emisoras deben contar con estrategias tecnológicas adecuadas para contrarrestar las dificultades de la industria que les permitan competir con otros medios, fartaleciendo su participación del mercado publicitario, la cual ha sido sustancialmente mermada por la creciente competencia.
INTERNACIONAL DE RADIODIFUSIÓN, AMITRA 2021.

a Asaciación Mexicana de Ingenieros y Técnicos en Radiodifusín A.L. (AMITRA), que encabeza su Presidente el Ing. Julia César López García, realizó del 19 al 21 de agosto el XLIV Congreso Internacional de Radiodifusión, que por segundo año se llevó de manera virtual.

La inauguración contó con la participación de Gabriel Escamilla, prestigiado Locutar y Programador de la Z, como maestro de ceremanias, quien tuva el honar de presentar al Lic. José Luis Rodríguez Aguirre, Presidente de la Cámara Nacional de la Industria de Radio y Televisión (CIRT) e Ing. Artura Rables Ravala, Comisionado en el Instituto Federal de Telecomunicaciones (IFT).

Al dar la bienvenida a los presentes y tomar la palabrael presidente de AMITRA señaló: "Sabedores de lo que ha ocasionado esta pandemia, crisis en tados las ámbitos y nosotros na quedamos exentas de ello, les podemas decir que AMITRA sigue trabajanda. Par eso este congreso virtual. Es una apartunidad para tener mejor acercamienta y hacer uso de las nuevas tecnologías que nos permiten aprender en línea. Estas herramientas tecnológicas nuevas llegaron para quedarse y ser un complementa en la capacitación. El congresa tiene un objetiva clara que es brindar información para seguir profesionalizando a los Ingenieros, y dar las mejores armas que es su conocimienta para apuntalar su quehacer profesional".

Agregó el Ing. Lápez, que en AMITRA se siguen sumando sacios mes con mes, se lleva a cabo una plática técnica mensual, han participado en la NDM de HD Radia; trabajaron en conjunta con Xperi para poder certificar a las Ingenieras en HD Radio can más de 230 participantes que se certificaron.

Y para finalizar invitó a que usarán la App de Amitra en la plataforma de su teléfono. Además de visitar el canal de YouTube donde podrán volver a ver las pláticas de este congreso.

En su participación el Comisionado Rables resalta la gran aportunidad de estar presente en el Congresa de AMITRA y representando al IFT, "porque justamente en estos espacios es donde mis colegas Ingenieros y también los colegas del IFT logran actualizarse en tópicas referentes a las avances tecnológicas de las servicios vigentes y los servicias futuras que se ofrecen al público internacional y también al mexicano el cual tiene un inconmensurable valor. La pandemia ha demastrada el valor de la radio y también de las Ingenieras en radiodifusión". Finalizó.

El Presidente de la CIRT, en su intervención expresó: "Es un honar y un gran gusta estar aquí presente de cara al arranque de actividades de esta reunión de trabajos, estoy segura hará más relevante el ejercer de todos y cada uno de ustedes. Es un hecho que lo más importante de nuestro diario contacto con el auditorio es la estabilidad, permanencia y calidad de nuestras señales. Los mejores contenidos y los más relevantes servicios que hemos brindada de cara a la pandemia no se lograrían sin la emisión y recepción de nuestras transmisiones que están por supuesta en las manos de cada uno de ustedes.

En charlas con los Ingenieros de esta industria hemos vista que al día de hay, hay pocas vocaciones para continuar en esta entregada e importante profesión. Habrá que alentar a los jóvenes a integrarse, hacerles ver los estudios que muestran que los índices de audiencia vienen creciendo aña con año así coma lo plantea el Comisionado Rables.
Y_{0} recuerda con mucho cariña que me inicie trabajanda en la radiodifusí́n, en el departamento de ingeniería. Recuerdo con gran aprecio a mi maestro y lo saludo aquí a Luis Cepera, también recuerdo al Ing. Jaime Rabledo, Exdirector de Ingeniería de la CIRT, entre atras".

El Lic. Rodríguez inaugurí a las 10: 40 haras el inicio del congreso el 19 de agosta de 2021 el cual contó con más de 80 socios e invitados virtualmente presentes en el primer día de actividades.

La informaciôn más relevante de la
Asociación Mexicana de Ingenieros y Técnicos en Radiodifusióno $A_{0} G_{0}$

RadioAPI: la llave de acceso al ecosistema digital.

5eqún el Reporte Total de Audiencia de Estadas Unidos publicada par Nielsen en 2019, la radio sigue siendo el medio de comunicación con mayor alcance, especialmente entre la población de 35 a 49 añas, que representa el 94% del total.

En México, de acuerdo con la Encuesta Nacional de Consumo de Contenidos Audivisuales publicada por el IFT en 2019, el 34\% de los encuestados accede al contenido de la radio a través de un dispasitivo inteligente (teléfono, tableta a bocina) o de una computadora, mientras que el 39% asegurá hacerla en su auta a en el transporte público.

En este contexta, la forma en la que el radiaescucha consume su contenida ha cambiado, fundamentalmente debido al crecimienta de la infraestructura digital, por lo que ahora decide:

- Que tipo de contenida desea.
- El tiempa y el lugar de cansuma.
- El dispasitiva y la farma de consumirla.

Por tanta, las estaciones que únicamente transmiten de forma tradicional están en desventaja, ya que su contenido se limita al audio analógice, sin apravechar los beneficios de la radia digital.

De ahíla importancia de que, con la infraestructura digital adecuada, los radiodifusores puedan garantizar una experiencia integral a sus usuarios y estar listos para adaptarse a los ecosistemas digitales del futuro.

Infraestructura digital basada en el desarrollo de Apps

Debida a que las Apps conforman el sector de mayor crecimienta a nivel glabal además de ser una de las formas más populares de acceso al contenido radiofónico, algunos radiadifusores han desarrollado aplicaciones para tener presencia en las tiendas, aunque sin ofrecer beneficios atractivos a sus usuarios más alládel streaming de audio.

Es importante considerar que contar con una infraestructura digital interna para el desarrollo de Apps representa un reta para la estación, ya que implica:

- Contratar personal calificado para desarrollar y programar aplicaciones.
- Invertir tiempa y recursas para la administración del prayecta.

Además, es fundamental que las Apps desarrolladas:

- Sean atractivas y ofrezcan un valor agregada.Integren contenido diverso (audia, videns, noticias, contenido bajo demanda...).
- Garanticen conexión con otras plataformas digitales como bacinas inteligentes, Android Auta, Apple CarPlay a Radio HíbridaConectada.

¿Cómo acceder entonces a una infraestructura digital que integre toda esta?

RadiaAPI (Interfaz de Pragramación de Aplicaciones) es la respuesta. Desarrallada por Xperi bajo la marca AIM, esta infraestructura digital exclusiva paraestaciones de radio les permite:

- Integrar contenido diversa adicional al audio.Conectarse con múltiples plataformas digitales.
- Ofrecer una variedad de funcionalidades en las Apps.
- Contar con una plataforma adaptable, flexible y escalable.
- Crear métricas de consuma.
- Generar nuevos ingresos al integrar publicidad con audios, videas e imágenes digitales.
- Ofrecer al radioescucha una experiencia personalizaday atractiva.

De esta manera los radiodifusares sólo tienen que enfacarse en lo que mejor saben hacer: İgenerar contenido atractiva para sus usuarias!

AMITRA INFDRMA

※PERI.

SOLUCIONES DE BROADCAST

Estamos a sus órdenes:

fabian.zamarron@xperi.com / jorge.chavez@xperi.com
xperi.com

Revive cada ponencia de los congresos virtuales de AMITRA. Todas las conferencias con ponentes de alta experiencia, inauguración oficial y reconocimientos a nuestros ingenieros y amigos radiodifusores.

Inscríbete a nuestro canal de YouTube. Entra en amitranacional o escanea el código QR. Son más de 60 videos editados profesionalmente.

Procesamiento de Audio

Por Sergio Beristain

EI proceso de las señales de audio se ha hecho cada vez más indispensable por tres razones fundamentales:
A) Dbtención de sonidos realistas, can sistemas que tienen limitaciones.
B) Efectos especiales, cuando son necesarios.
C) Máxima eficiencia en sistemas de transmisión, can señales de amplitud adecuada en tada la zona de cobertura de una estación radiodifusora.

Es necesario compensar las atenuaciones introducidas en la señal por las diversas companentes del sistema como san: micrófonos, cables, amplificadores, etc. con ayuda de amplificadores y filtros (o ecualizadores), con el abjetiva fundamental de restablecer el nivel de la señal en las distintas regiones del espectra de frecuencias, y mantener la seña alejada del nivel de ruido.

En ocasiones se excede el rango dinámico musical, considerado de unos 7 DB , hasta en 2 O o 30 dB , por lo que se requiere del uso de compresores y limitadares para evitar saturar los sistemas de registro y transmisión.

Tados los dispositivos electrónicos y los sistemas de grabación introducen una cierta cantidad de ruida, que no es más que sanido no deseado y, por lotanto, no es conveniente que se mezcle con el sonida del programa, o sea que, de alguna manera hay que mantenerlo al mínima, y/o la señal tan alejada del ruido como sea posible.

Es natural que se exija el máximo aprovechamienta de la potencia de un transmisar, por razones económicas y con el objeta de cubrir la mayor área posible con señal de pragrama detectable par radiorreceptores convencionales, con niveles suficientemente elevados y sin exceder las normas establecidas.

Un procesadar de audio es aquel dispositiva que modifica de alguna manera la señal con el fin de reducir el efecta del ruida y carregir algunas deficiencias intrínsecas de las dispasitivas del sistema, además de prategerlos.

Entre los equipos de audio, se tienen relaciones señal a ruida del arden de 38 a unas 10 dB , por ella existe una gran variedad de sistemas у equipos para procesar las señales de audio, aquí serán tratadas algunas de sus características básicas.

Compresares y Limitadares.

En el munda de la radiadifusión se denomina pracesador de audia a los dispositivas que se encargan de reducir el rango dinámica de las señales can el fin de que puedan pasar con menar distarsión por las equipos involucrados en el proceso, especialmente el transmisar de potencia, o los sistemas de enlace.

Frecuentemente al grabar, el ingeniera de sonida desde la consola, eleva el nivel de las pasajes más tenues de la música y atenúa los más fuertes. Esta ha sida la clave de muchas grabaciones excelentes, lo mismo hace el ingeniero de sonido en la cabina de control de una radiadifusora. El objetiva de esta práctica es, por un lado, no perder la señal de programa que contiene muy poca energía, en el ruido generado por el propio sistema, y por el otro, evitar saturar el sistema a sabre modular la señal en el transmisor. El efecto neto es una reducción del rango dinámico de la señal.

No siempre es posible realizar este control en forma manual con la suficiente velocidad y anticipación, en su casa, con la que se pudiera necesitar, de ahí que se hayan desarrollado los compresores y limitadores automáticos.

Un compresor es un amplificador no lineal que presenta ganancia unitaria cuanda la señal de entrada es pequeña, pero cuando ésta rebasa un cierto nivel denominado umbral de compresión, la ganancia se reduce, constituyéndose de hecho en un atenuador. En la sección de ganancia unitaria, un cambia de 5 dB en el nivel de la señal de entrada, produce un cambio de 5 dB en el nivel de la señal de salida.

Venta，Instalación，Reparación，Capacitación y Soporte Técnico．

Seguimos trabajando para ofrecerle la mejor técnología y el más completo servicio．

Av．Benito Juárez No． 196 Int． 5 Col．Centro San Juan del Río，Querétaro，C．P．76800，México．

Teléfonos：427－138－5742， 427 138－3317

Par encima del umbral，para praducir un cambia de 5 dB en la señal de salida，puede requerirse un cambia de 10， 15 र́ 2 Z dB en el nivel de la señal de entrada，lo que depende de la relación de compresión del dispositiva，que en estos casos es de 2：1，3：1 ó 4：1 respectivamente．De esta manera se introduce en la señal una cierta cantidad de distorsí́n lineal，que se incrementa con la relación de compresión．

El limitadar，para niveles de señal par encima del umbral de limitación，prácticamente na se praduce cambio alguna en el nivel de la señal de salida，sin importar que tan grande sea el nivel de la señal de entrada．Para fines práticas se considera que un compresor con relación de compresión de ID：I o mayor，constituye un limitador，y los hay can relacianes de compresión del arden de 50：y y ID：II．

También existen amplificadores compresares－limitadores，y poseen dos umbrales，uñ para cada función．Coma ya se mencianó，el principal objetivo es reducir el rango dinámico de la señal sin introducir distorsión no lineal que resulte muy objetable．

La relación de compresión，así como su umbral pueden ser fijos a variables de acuerdo al diseño del campresor，a sea que es posible generar señales con diferentes rangos dinámicos para una misma señal de entrada，praducienda con ello diferentes efectos sonaras．

Das características fundamentales de los compresores y limitadares，san sus tiempos de ataque y de relajación，que son los tiempos que tarda el compresor en efectuar su función una vez que se supera el umbral，y el de regreso a ganancia unitaria，cuando la señal ya es menor que dicho umbral，mismos que también pueden ser fijas a variables．Si el tiempo de ataque es muy corta el compresar actúa tan rápido que no da tiempo al oído para detectar ciertos sonidos， especialmente de baja frecuencia．La idea es aprovechar en cierta medida la facultad del oído de retener por un tiempa la impresión de que el sanido es fuerte，aunque solo lo haya sido al principio，de ahíl a utilidad del tiempo de ataque breve，pero no demasiado．Si la respuesta fuera prácticamente instantánea，al presentarse una nota muy larga，el efecto subjetiva sería el de un sanida de carácter percusiva．El tiempo de relajación también afecta la respuesta subjetiva．Cuando es muy largo produce enmascaramienta de las notas de bajo nivel que siguen a la que activó al compresar．Cuando es muy corta，prácticamente todas las notas se perciben con claridad，solo que el cambio rápido a ganancia unitaria，puede generar sonidos no deseados en farma transitoria．Esto indica que el tiempo de relajación debe tener un valor úptimo，el cual además depende del material sonora de que se trate，pero es más largo que el de ataque．En general，el ingeniera de sonido debe tratar de abtener el efecta menas destructiva sobre la señal de pragrama．

Entre los sistemas y equipos comerciales, existen compresores cuyos tiempos de ataque y relajación pueden variarse en forma manual, y en el caso del tiempo de relajación, también los hay con respuesta automática, y actúan de acuerdo al material de programa que pasa por ellas, a cama lo pragrame el ingeniera en base a las señales que ргосеsa.

Hay en el mercado una gran variedad de compresores y limitadares que sirven diferentes abjetivas específicas, desde los efectas especiales en un estudio de grabación, hasta la transmisión FM estéreo. Se les encuentra con пombres coma: Niveladar de audia; compresor limitadar; limitadar de modulación; control automática de nivel; control automático de ganancia; control automático de picas; control úptimo de modulación; etc. según el fabricante y la aplicación general o especifica paralo que fuerondiseñados.

Características de un compresor-limitadar de prapósita general.

- Compresar-limitador, solo compresar a amplificadar normal.
- Límite de picos simétrico a asimétrico.
- Umbral de compresión y factor de compresión.
- Respuesta de audiofrecuencia plana a con preénfasis de 75μ seg.
- Control automático de ganancia inter-construido.
- Tiempo de relajación ajustable $0.8,2$ y 5 s .
- Tiempo de ataque, menor al $\mu \mathrm{s}$ a unos 50 ms.
- Protección contra campos de RF muy fuertes.

Un ejemplo de funcionamienta. Un detector de onda completa de audia praporciona un nivel de valtaje proparcional a los picos y controla un atenuadar de nivel promedia a través de una resistencia de voltaje variable (VVR). Este dispasitiva VVR tiene una enorme relación señal/гuido de वрегасі́́n у по genera distoгsión, pero tiene un tiempo de ataque comparativamente lenta. Para controlar señales de audio con un carta tiempa de elevación, el valtaje de contral es diferenciada y aplicado a la compuerta de un transistor de efecta de campo. Esto actúa en paralelo con el VVR. El resultado es un compresar con relación señal/ruido de 4D dB y un limitadar con tiempo de ataque cortísimo.

Un ejemplo de procesador de audia para radiadifusión divide el rango de frecuencias de 2 OHz a 15 kHz , en tres bandas con frecuencias de cruce en IZO Hz y 6.5 kHz, después cada una de ellas pasa por un control automático de ganancia independiente. Al salir de ellos, la señal se une nuevamente para alimentar un limitadar única y de ahí entregar su salida directamente al transmisor a través de un atenuador de salida. Cuenta con límites simétrica y asimétrica de ITD \% y I25 \%. Los hay hasta con diez bandas de frecuencia para darle mayor versatilidad, y pragramables.

El primera de estos dispositivos es aplicable tanta en estaciones radiodifusaras de AM y FM, como en estudios de grabación u otras instalaciones. El segundo, es específico para estaciones de radiodifusión

AM monafónica, justo antes del transmisar. En radiodifusión es importante que cuando se ha logrado la respuesta íptima, los controles no sean alterados durante las transmisiones normales, por la que varios procesadores de audia tienen seguras de aperación para prateger el mejor resultado.

Cuando se trata de programación estérea, es indispensable que los compresares funcionen en farma coardinada, respondiendo simultáneamente al incremento del nivel de la señal de cualquiera de los canales. De otra manera daría la impresión de que las sonidos localizados en el centra del panorama estérea, oscilan de un lado al atro si fuera activado un solo compresor cada vez, generando por tanto distorsión espacial.

Diferentes umbrales de compresión, señal ariginal, umbral de compresión alta, umbral de compresión más bajo.

Diferentes factores de compresión

Conclusiones:

El emplea de procesadores puede ser de ayuda en el maneja de las señales; Requieren ser empleados can precaución; Escuchar los resultados obtenidos; Todos los procesadores de audio introducen distorsiona en la señal, aunque menor que si no se les emplea.

Amigo Radiodifusor Nacional del Año 2021
Lic. Jóse Luis Rodríguez Aguirre
Presidente del Consejo Directivo de La Cámara Nacional de la Industria de Radio y Televisión, CIRT, (2018-2021).

Es Director General de Respuesta Radiofónica, empresa de Radiodifusión, que inicia sus operaciones en 1988.

Es licenciado en Administración de Empresas por la Universidad lberoamericana y cuenta con estudios de posgrado en materia de negocios y finanzas en la UCLA y el IPADE.

Entre 1995 y 1997 fue Presidente de la Delegación Querétaro de la CIRT y Vicepresidente del Consejo Nacional Consultivo de la misma Cámara entre 2007 y 2010. Como empresario, además de la radiodifusión, ha desarrollado y dirigido empresas del giro turístico, restaurantes, comercialización y ventas.

Rodríguez, fue electo por la asamblea de la CIRT, como presidente del Consejo Directivo 2018-2021.

Amigo Radiodifusor Regional del Año 2021 Antonio Grajales Salas

Presidente de Grupo Radio Oro.

Después de más de siete décadas atrás, el sonido de la emisora XECD 11.70 continúa inundando los hogares poblanos, manteniendo la cercanía con el oyente como su principal señal de identidad.

La radiodifusora XECD, cuyo nombre mantiene las siglas otorgadas en su licencia. Nació el 5 de mayo de 1940, coincidiendo con una fecha histórica para Puebla, un ciudadano llamado Gil por su apellido fundó la emisora.

Originario de Banderilla, Veracruz, Joaquín Grajales Corral aprovechó su experiencia como reconocido locutor de la emisora XEW, que inició en 1930 en la Ciudad de México, para adquirir en 1954 la radio poblana, que entonces operaba en el número 803 de la calle 2 Norte bajo la dirección, tras varias transacciones, de Federico Fresse Márquez.

El fallecimiento en 1973 de Joaquín obligó a su hijo Antonio Grajales Salas a tomar las riendas de la difusora, que había adquirido ya gran fama entre los poblanos. La visión administrativa del nuevo presidente propició la consolidación y expansión del Grupo Radio Oro.

El Ing. Julio César López García, Presidente de Amitra Nacional, estrechando manos con el Radiodifusor,
Antonio Grajales Salas.

Amigo Proveedor del Año 2021
 Ing. Jóse Luis González Cortes,

 Presidente de Radio Transforma de México S.A. de C.V.

- Ingeniero en Comunicaciones y Electrónica. Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME). Egresado en 1960 y titulado en 1967
- Perito en Telecomunicaciones No. 026

Vitalicia en el CIME (Colegio de ingenieros Mecánicos y Electricistas).
Desde hace tres años en el CICE (Colegio de Ingenieros en Comunicaciones y Electrónica).

- Consultor Técnico Registrado: Operando Desde Mayo 1973.
En Sistemas De Radiocomunicación, Radiodifusión y Sistemas Especializados (Cable) con Revalidación de Cofetel y Actividades Conexas en Comunicación Satelital y Nuevas Tecnologías y DRM Digital.

Actualmente es el Presidente de Radio Transforma de México S.A. de C.V: 50 Años al Servicio de Telecomunicaciones con 971 Transmisores Vendidos en Todo el País.

En el 2016 La Cámara Nacional de la Industria de la Radio y Televisión, CIRT, le otorga el Premio Antena CIRT, por su larga trayectoria en la Radio.

Socio desde 1974 de AMITRA. Ha asistido a los 42 Congresos anuales de AMITRA Nacional, como patrocinador con sus diferentes empresas a los congresos y seminarios de las Delegaciones de Amitra Puebla, Jalisco, Nuevo León y Chiapas.

ASOCIACIÓN MEXICANA DE INGENIEROS Y TÉCNICOS EN RADIODIFUSIÓN A.C.

GRACIAS
A LOS 24 PONENTES Y A LOS 70 ASOCIADOS EL CONGRESO VIRTUAL FUE TODO UN ÉXITO

1974-2021 47

ASOCIACIÓN MEXICANA DE INGENIEROS Y TÉCNICOS EN RADIODIFUSIÓN A.C.

Ingeniero del Año 2020

RAFAEL VELASCO SERRANO

Ingeniero en Comunicaciones y Electrónica,Generación 1968-1972
Egresado del Instituto Politécnico Nacional, de la Escuela Superior de Ingeniería Mecánica y Eléctrica.

Participante en la formación de la Red de Televisión Cultural de México. Que tenía como encomienda principal transmitir la telesecundaria en áreas remotas. Desde 1972 hasta 1984, desarrollando los puestos desde instalador de las repetidoras hasta el director de la red la cual se integró finalmente a los recursos de televisión oficial denominada "INMEVISIÓN".

En FAGSA, compañía mexicana de fabricación de transmisores de radio y televisión, como gerente de producción para transmisores de alta potencia.

En TELEVISA como gerente del laboratorio en la vicepresidencia de transmisión y conducción de señales, participante en la primera demostración en México de televisión digital, sistema muse, con con soporte de NHK, así como en el requipamiento del canal de las estrellas y de la nueva cadena.

En TELEVISIÓN AZTECA en 24 años, como gerente de planeación de coberturas y tecnología, y gerente de asuntos regulatorios, participando en la transición de la transmisión análoga de televisión a la digital de alta definición, supervisando los documentos oficiales de las más de 400 estaciones entre concesiones y complementarias.

Adicionalmente: Integrante de Colegio de Ingenieros en Comunicaciones y Electrónica (CICE). En el Instituto Federal de Telecomunicaciones, integrante del Comité Consultivo de Acreditación de Peritos en Telecomunicaciones y Radiodifusión y Perito Certificado por el Instituto.

Ingeniero del Año 2021: MARIO HERRERA CERVANTES

Ingeniero en Comunicaciones y Electrónica, Generación 1966-1970 Egresado del IPN de la Escuela Superior de Ingeniería Mecánica y Eléctrica.

- Inicia su práctica en el ámbito de las Telecomunicaciones para la empresa Telesistema Mexicano. Periodo 1966-1970, a la par de sus estudios; continuando ya como ingeniero en la empresa Televisa S.A. de C.V. de 1971 a 1985, llegando a ocupar el cargo de gerente general para la operación técnica de los Canales 2,4 y 5 en la República Mexicana.
- Obtiene licencia de Perito en Radiodifusión en 1979, acreditado por la S.C.T. continuando su actualización, hasta la fecha, acreditado por el IFT.
- En 1985 se desarrolló como Perito independiente, mediante la firma consultora Cast Electronics. En 1999 funda la empresa Broadcasting S.A. de C.V., de quien funge como director hasta la fecha, realizando actividades de asesoramiento y coordinación técnica en proyectos entre los que destacan la coordinación general del proyecto de diseño,
 Además de otros proyectos de instalación en el interior del país.
- Continúa asesorando a Gobiernos de los Estados en el desarrollo y regulación de canales de Radio y Televisión, hasta ahora.
- Miembro de AMITRA de 1990 a la fecha; participante en la convención de Miami en 1993.
- Miembro del Colegio de Ingenieros Mecánicos Electricistas de 1980 a la fecha.
- Presidente del Comité Nacional Permanente de Peritos en Telecomunicaciones, del CIME, durante el periodo 2004-2006. Coordinador de la Reunión Nacional Bienal de Peritos, "Siglo XXI, el Reto de la Convergencia". En 2005.

Colaboración con la autoridad:

- Acuerdo México-EUA: Servicio de Distribución Multipunto MDS.
- Participación en reuniones de trabajo, convocadas por el Senado de la República en 2005 y 2007. Sobre temas importantes en la radiodifusión, de ese período.

MARIO HERRERA, Celebra 50 Años de Ejercer la Profesión de Ingeniería en el Área de Radiodifusión.

Ingeniero Regional del Año 2021
Enrique Martínez Marín

- Técnico en Electrónica en Atena College.

Experiencia Laboral

Trabaja en Radio desde 1984, inició en el IMER, posteriormente en
Radio Núcleo TG de Chiapas y en Grupo ACIR Puebla, actualmente en Cinco Radio.

Ha instalando cerca de 40 estaciones de radio de AM y FM.

Responsable técnico de 12 estaciones de radio, en las cuales da mantenimiento y soporte técnico.

Socio desde 1988 de la Asociacion Mexicana de Ingenieros y Técnicos en Radiodifusión (AMITRA).

Ha asistido a varios seminarios anuales de AMITRA Nacional.

Colaborador de forma permanente de la mesa directiva de AMITRA Delegación Puebla, Actualmente Presidente.

Ha organizado 17 Congresos Internacionales de la Delegación Puebla.

"El colapso del contexto"

 Por Aram JiménezDe inicio hablaremos del coranavirus como detanante de nuevas farmas de creación artística y del confinamiento simultánea de 3. 10 millanes de persanas en tado el planeta, que ha madificado nuestra percepción de la realidad, de la canvivencia, de la que es pública y privado. En este momenta, sucede un númera infinita de contextos colapsanda unas sabre atras en un única mamenta de grabación dande las imágenes, acciones y palabras capturadas por la lente a micrófono pueden ser transpartadas a cualquier lugar del planeta y preservadas para siempre. Alga que también podemos llamar el sexta sentida de la creatividad, el poder de percibir el munda a través de distintas fuentes y de distintas farmas, la comunicación desde la de uno hacia la de tados.

A partir de esta y de plantear que nuestra relación con el sanido дгuгге ргіпсіpalmente a nivel psicalógica, fisialógica, cognitiva y de comportamienta, se vuelve sumamente relevante la implementación de la tecnalagía Ambisonics como salución de audio para la creación y гесгеасión de paisajes sanaras a simplemente para la repraducción de audio en sistemas envolventes. Esta es una solución que permite grabar, manipular у гергаducir audia para que las ayentes puedan percibir las sonidos ubicados en el espacio tridimensional. Esta, puede ocurrir a lo largo de un escenario horizontal (sistemas pantafónicos) a a la larga de una esfera completa (sistemas perifónicas). Ambisanics se desarralló a principios de 1970 y el principal impulsar fue Michael Gerzon. El nombre surgió a partir de las raíces latinas ambire (ir alrededor, гоdear) y sanus (sanida).

Esta tecnología está distribuida en 4 fases: grabación con técnicas microfónicas, codificación en formatos específicos, decodificación de canales y гергоducción.

La teoría de las señales usadas por Ambisonics, es canocida como la tearía de los armónicos esféricos, donde se puede reconstruir una

señal por medio de la suma de componentes individuales y la cantidad de armónicos que se empleen se canoce coma el arden de la tearía Ambisonics.

Se entiende coma arden cera W la función amnidireccional. El primer arden incluye el arden cera y las señales X, Y, Z, el segunda; además de estos cuatro incluye cinco armónicos más y así sucesivamente.

Teniendo en cuenta lo anteriar La Técnica Ambisanics, utiliza un única micrófono que cantiene una matriz tetrádrica de cápsulas nominalmente cardioides, dande las señales de la cápsula se procesan de manera que den 4 señales de salida en formato B, que son proporcionales a la presión y el vector de velocidad de partícula tridimensional en el centro de la matriz. Este diseña permite capturar esféricamente el sonida proveniente de tadas las direcciones a partir de un solopunta en el espacio.

Los fundamentas de conversión de Formata A a Farmata B se realizan a través de operaciones matriciales de las señales recogidas de las capsulas.

Hoy en día, la industria ha adaptada Ambisanics cama estándar de audio 3 D en videos, juegos y experiencias de realidad virtual. Por ello, con el objetiva de que el usuaria pueda sumergirse en el contexto de una escena real mediante un paisaje sonora inmersivo, "las grabadaras ZODM y el software Ambisonics Player" resuelven las dos principales incógnitas de praducir audio espacial:
"Hacer que un archivo de audio suene en la misma dirección proveniente de la ubicación real, en la escena ficticia (espacializar) y conseguir que cualquier audia espacial o archiva de audia no espacial sea interactiva paraun espectadar".

Nunca en la historia, miles de millanes de individuos habían tenido accesa a la tecnología que distribuye contenidas y productos audiovisuales sin patria ni bandera. Ahara, nuestra misión profesional se volvíó transformadora y marca un cambio de paradigma, teniendo consecuencias en la naturaleza más íntima y creativa del producta y su consumo.

La Evolución del Radioescucha: ¿Cuáles son las oportunidades?

Por Ing. Julio César López López

Según el Mediómetro de INRA, la pandemia del CCVID-I9 dio un empuje tan solo en CDMX de un total de 9 millones de radiaescuchas por mes durante el 2020.

De manera simultanea, hasta 2021, el 89.1% de la población mexicana equivalente a ll5.4 millones de habitantes posee acceso a un Smartphone con internet, de acuerdo al Digital 2021 Glabal Dverview Report.
ilmaginemos con esas cifras el potencial de alcance par lograr todavía! ¿Cuántas personas están aún por disfrutar las contenidos de nuestras transmisiones?

Radia Interactiva: Nuevos medias de venta

¿Cómo complacemos a una audiencia cada vez más selecta y exigente con lo que consume? ¿Con aquello alo que dedica su atención e interés?

Presentamas la radio interactiva en México.
Sprinter (Radia, TV y Noticieros Interactivas) es un grupo de novedosas tecnologías desarrolladas por Freepi en forma de software y apps; únicas y pioneras en su tipo no solo gracias a su práctica y eficaz funcionamienta téerica sina también a las inmensas posibilidades que гepresenta, pudienda incursionar inclusa en el la radia, la TV y las noticias.

Sprinter revoluciona la experiencia de radioescucha, cliente y estación a través de aplicaciones móviles de radia volviéndalas dinámicas e interactivas; generando un canal de venta y monetización como nunce antes desde la app de radia que ya tienes, a bien, creando una parati adaptada a tuvisión y la de tu empresa.
iEl maderna diseña y la aptimizada experiencia de usuaria la ponemas nosatros!
"¿Ya cuentas con una app propia? No te preocupes. Sprinter incorpora fácilmente sus herramientas dinámicas a tu grandiosa aplicación."

En dicha aplicación podemos recibir beneficios pensados y adaptados en torno a la radio actual, permitiendo una vinculación directa y sin complicaciones, tales como:

- Transmisiones sin límites geográficos a gracias a una señal digital siempre constante.
- Bases de datos por grupodemagráficoe intereses.
- Captaciónmasiva denuevas clientes.
- Dinámicas y concursos entiempo real a través de la app.
- Publicidad inteligente en tiempa real vinculada a los spots programados.
- Publicidad en farma de juegos, videas, modelos 3D, enlaces, imágenes y más: todo a través de notificacianes inteligentes basadas en los intereses del radioescucha.
■ Testigo y manitarea de spots en tiempo real, 24/7 y sin interrupciones.
- Integración de noticias desde tu portal peridístico existente.

Comprendienda el beneficia de dichos conceptas, una puede ver el enorme potencial de ellos, por ponerlo en términos simples:

\square bien:

La Información es Poder: Conace a tu mercada y gana más.
Noes ningún secreta que el manejo de la información es un tesaratan valiosa coma el dinera misma.
iLarazón de elloes mucho más sencilla de lo que parece! Si conoces a tu consumidar y lo que mira a escucha, tendrás respuestas que ni

Sprinter genera bases de datos en tiempo real de los intereses de tus audiencias, zonas geográficas, grupos demográficos y mucho más. Analiza tus números y crea tus prapios planes de lealtad entre los clientes que contratan tu espacio, así como en los radioescuchas. A todos nos gusta ser recompensados.

"Genera bases de datos confiables con las preferencias de tu público desde tu app. Crea fidelidad y preferencia en tu audiencia con una experiencia personalizada."

La mejor manera de sacar provecho a un exitasa grupa de radia radica en procesos más simples, eficaces y confiables que permitan a nuestro personal aptimizar recursos, tiempoe ingresos.
¿Por qué no centralizar nuestras herramientas y ocupaciones en un solo software que no solamente plantea soluciones a problemas que pocos veíamos, sino que a su vez ofrezca ganancias en caminos inexplorados?

Tomala decisión hay mismo, imantente ilimitado!

iToda una suite pensada en automatizar tus procesos y aumentar ingresos!

Elige lo mejor

 Software y tecnología especializada en radiocomunicacionescontacto@digitalsnd.com.mx digitalsnd.com.mx
(+52) 5555325782

Sitios de Noticias, Radio y TV

SPRINTER

Marketing y Social Media para radio

Apps para Radio, TV y noticias

(

Radioactiva Tx, la primera estación de radio verde en México.
 Por el Mtro. Marco A. Delgado Merchan

EI más reciente informe sobre el cambio climático de la CNL , considera coma alga "inequívoca" que la humanidad "ha calentado la atmóasfera, el océañ y la tierra", lo que ha generado "cambios extremos generalizados y rápidos" en el planeta, tales coma alas de calor,fuertes precipitaciones, sequías y ciclones tropicales.

Lo anterior, traerá graves repercusiones anuestra ecosistema, que se irán agravanda con el pasa de los añas si desde hay no asumimos medidas efectivas para detenerlo.

Uno de los principales responsables de la contaminación de la atmósfera y de la emisión de gases de efecta invernadero a nivel glabal es el sector de la producción de electricidad. Esto debido a que para generarla se recurre a la quema de combustibles fósiles, como el carbón, el petróleo o el gas, en centrales térmicas, lo que genera millones de toneladas de contaminantes.

Debido a lo anterior, es responsabilidad de todos contribuir a la disminución contaminación de la atmósfera y de la emisión de gases de efecta invernadero. En este sentida, las estacianes de radiodifusín pueden contribuir transitando a la utilización de energías verdes a limpias, utilizando sistemas fatovaltaicos para la generación de energía eléctrica de sus plantas transmisoras y estudios.

En el casa de Radiaactiva Tx, XHTQS-FM 89.9 MHz de Tequisquiapan,『ra., operamos en nuestra planta transmisara con sistema fatavaltaico autónoma que nos permite ser independientes de la CFE y reducir costos de aperación. Cabe mencionar, que la estación ha estado aperando en forma continua con este sistema desde hace aproximadamente 2 años.

Para lograr lo anterior, tuvimos que poner especial cuidado en calcular el consumo real que tendríamos en la planta transmisara para poder dimensionar adecuadamente nuestro sistema fatovoltaico. Asimisma, tuvimas que reducir al máxima el cansuma de energía eléctrica para que el proyecta fuera viable desde el punta de vista económico, y más aun cansiderando que samas una concesión de usa social que cuenta con recursos limitados.

Al ser nosatros una estación de FM clase "A" instalada en un ceгro con un sistema radiador direccional, logramos operar con baja potencia nuestro equipa transmisor para alcanzar la Potencia Aparente Radiada Autorizada. Sienda este, el principal factor que determinóla viabilidad de la instalación de nuestra sistema fotovaltaico.

Adicionalmente, para reducir aún más el consuma, sustituimas el aire acondicionado por ventiladores, rejillas para ventilación natural y un extractar de aire eálica, con la que logramas obtener un consuma diario promedio total de energía eléctrica de 7,500 W.

Es de precisar, que las condiciones climatológicas del lugar en dande se encuentra instalada nuestra planta transmisora, Ғavorecen la existencia de carrientes de aire que facilitan el enfriamienta del equipo transmisar.

Es de precisar, que las condiciones climatalógicas dellugar en dande se encuentra instalada nuestra planta transmisara, favorecen la existencia de corrientes de aire que facilitan el enfriamiento del equipo transmisor, resaltanda que este y los equipos periféricos se encuentran alojados en un gabinete instalado en la torre, aproximadamente allo mde altura.

Par atra parte, nuestro sistema fatavaltaica autónomo está constituida por 9 paneles solares que generan en promedia 10.843 .87 W diarios, 3 bancos de 4 baterías para tener un sistema de 24 V que nos praporciona un respaldo apraximado de 2 días (de requerirse pademos utilizar una planta generadora de energía para recargar el sistema), un controladar de carga que distribuye la energía que va hacia los equipos de transmisión y a las baterías, un inversar de carriente para ргарагcionar carriente alterna con onda senoidal pura (con lo que no requerimas del usa de reguladar y supresar de picas); así coma un equipo de monitareo a distancia para conocer el comportamienta del sistema y de ser el caso, realizar a distancia los ajustes carrespondientes en el consuma y/a la generación de energía del sistema para mantenerlo estable. Cabe mencionar, que todos los equipos de nuestra sistema fatovaltaico se encuentran instalados en un gabinete al pie de la tarre para minimizar el impacto en la reserva ecológica en donde estáubicada nuestra plantatransmisara.

R R
 deradios.com

Oeisernorcon

R	E	V	I	S	T	A

deRadios.com

R A D I

Derivado de nuestra experiencia, consideramos que los sistemas fotovaltaicos independientes son adecuados para estaciones que cuentan con transmisares de baja potencia instalados en lugares elevados, debido a que, para el casa de estaciones que aperan con mediana a alta potencia, el costo del sistema sería muy elevado, además de que se necesitaría un terreno amplio para la instalación de los paneles, y por la tanto, se pandría en riesgo la recuperación de la inversión. No obstante, en el casa de estaciones de mediana y alta potencia, podrían operar con sistemas fotavoltaicos conectados a la red elértrica, en los cuales si se llega a exceder la capacidad del sistema se puede hacer uso de esta red.

Finalmente, para que se incentive la instalación de este tipo de sistemas en las estaciones de radio de nuestro país, es necesario por su costa inicial, instrumentar apayos gubernamentales a los concesionarius que apten por utilizar energías limpias; como sucede por ejempla, con la transición a la HD. De esta forma la radiodifusión también podría contribuir en la reducción de la huella de carbona para heredarles un mejor planeta alas futuras generaciones..
(ㄱ) ESCANEAME

Internet a través de la señal de Televisión.

Por Dr. Willy Azarcoya Cabiedes

El nuevo sistema de televisín ATSC 3.0 fue creado en los Estadas Unidos en el 2012 con abjeto de mejorar el sistema digital de televisíńn existente en ese momento. Este nuevo sistema se utilizó por primera vez en las juegos alímpicos de invierno en Carea del Sur en febrera del 2018. Hay 2021 más de la mitad del territario de Corea del Sur cuenta con señal de la nueva televisión. En los Estados Unidas existen 62 ubicaciones con señal del ATSC 3. . dande el 75\% de la audiencia pueden sintanizar dicha señal. Debido a la pandemia de CDVIDII su desarrallo se ha vista en dificultades, aun así Brasil ya está en el perídad de pruebas de este sistema en su territoria parael 2022, y la India también lo instalaráen su territorio tras pasar los problemas de la pandemia.

Las principales características de esta Nueva Señal de Televisión son esencialmente tres:
I. La nueva Televisión digital es tres veces más e?ciente que la instalada en México y con mejor calidad, tiene mas señales por canal y un sistema internacional para emergencias.
2. Cuenta can señal de Internet añadida a su frecuencia por lo que donde llegue la señal de televisión Ilegará la señal de Internet a través del aire.
3. La señal de videa podrá ser recibida por medio de dispositivos móviles - teléfonas, tabletas, etc., sin utilizar la red de Internet.

¿Zué es Emisión Educativa (EmiEdu), y Cómo usarla para educación a distancia?

La Emisión Educativa (EmiEdu) a distancia es un servicio de ayuda a la enseñanza por medio de difusión de datos ${ }^{1}$ escolares que hace usa de las señales de televisíón con objeta de ofrecer a los estudiantes contenido en el aula sin la necesidad de un accesa viable a lnternet in situ.

Se puede acceder al contenida de la emisión de datos en casa utilizando una computadara portátil a una tableta; no implica ver televisión. (Ver Figural) Los maestros y los distritos escolares pueden compartir el mismo contenido con tados sus estudiantes, independientemente de su acceso alnternet en el hogar.

¿Porqué usar la emisión de datos para la educación a distancia?

- Permite la brecha de educación digital en lugares dande la banda ancha no estádisponible oes demasiado cara.
- No mas flujo de trabajo adicional para los maestros. EmiEdu puede interactuar con las mismas herramientas del Sistema de Gestión de Aprendizaje (SGA) que los maestros usan normalmente.
- Proporciona la experiencia de usar Internet, al tiempo que limita el acceso exclusivamente al contenido diseñado por el maestro.
■ El contenido va directamente a los estudiantes. No más encargos usando material en papel en la escuela, a accesa solo cuando los padres deben encontrar puntos con acceso a Wi-Fi.
- Si cantamas con Internet limitada dispanible, nas praporciona una forma de devoluciones para los maestros, incluso si no es funcional para el proceso de aprendizaje.
¿Cuáles san la ventajas de la emisión de datos?
- Misión de la Televisión Pública a larga plaza. Respaldada por la misión y el compromisa de la Televisión Pública, las trabajas de emisión de datas educativos en cualquier lugar dande se pueda recibir la señal de transmisión de la estación. El abjetiva es igualar el acceso de los materiales educativos, para que los estudiantes con conexión limitadana se retrasen.

[^3]- La infraestructura está lista para instalarse. Una parte del espectra de televisión pública se utiliza para сгеаг una nueva red segura de datos inalámbrica con una amplia cobertura rural. La televisí́n pública ha demostrado resistencia inclusa en situaciones en las que atras redes pueden estar sujjetas a cortes de energía aclima severa.
- 24 nuevas estaciones serán instaladas en $\mid 5$ estados de la República por SPR. Es impartante que las nuevas estaciones usen La Nueva Televisión a estaríamos destinados a atrasar la educación l| años por lo menas. Llevamos 60 años de gastar en educación de farma prioritaria, y México aun tiene 5.5% de analfabatismo.
- En casa del estudiante: un receptar tipo modem y una antena de ventana es todo lo que se necesita. Los estudiantes se conectan a la señal Wi-Fi del receptor a su computadora portátil, tableta u otro dispositiva habilitado para Wi-Fi. Un receptor puede servir a varios estudiantes en el hogar al mismotiempo de forma personalizada.

¿Cómo trabajar?
Los maestros continúan publicando asignaciones y materiales de aprendizaje a sus SGA, tal como lo hacen en este momenta para aquellos estudiantes que cuentan con banda ancha. La emisión de datos funciona a la perfeeción en el contenido de SGA para estudiantes de emisíán de datos insertando esos archivos en la transmisión de TV. Los maestros pueden compartir materiales a tados los estudiantes en su clase, o enviar contenido solo a estudiantes individuales.

Los estudiantes se canectan a una página web generada por el receptor de Emisión de Datos en su hagar para acceder al contenido camo si estuvieran en la lnternet real usando una computadara portátil o tableta. Los estudiantes están esencialmente en una intranet cerrada desarrollada por el maestro.

La Emisión de Datos tiene muchas ventajas, pero no es internet. Al igual que las señales de TV, se monta en un solo sentida. Se puede usar una conexí́n a Internet intermitente a paca confiable coma una trayectoria de retorno, la que la convierte en una conexión de datos bidireccional. Cuando existe poco a ningún Internet disponible, la Emisión de Datos tadavía permite que los estudiantes acceden al mismo contenida que harían si tuvieran banda ancha.

Figura I: Principio hásico completo

1. En el Númera I de la Figura se puede ver la señal al aire que llega al hogar de ATSC 3.0
2. En el Númera 2 tenemas el Dispositiva Educativa que genera el Wi Fi a través de una antena que cubre todoel hogar.
3. El Número 3 es la televisión dande se sintaniza la señal de televisión abierta.
4. El Númera 4 es la computadora a laptap de sistemas Mac, Windows a Linux dande el estudiante puede bajar los dacumentas que mande el maestro, ya sea tarea, libros, explicaciones, material de estudio, etc. Los documentas pueden ser personalizados por alumno.
5. El Númera 5 san los dispositivas con que cuente el alumna para trabajar, una tableta, un teléfono mávil etc.

¿Cómo podemos empezar con la Emisión Educativa - EmiEdu?

- La primera que necesitamas es adaptar el nuevo sistema de Televisí́n ATSC 3.C el cual ya estávigente en varias partes del mundo. Este sistema utiliza el misma ancho de banda que el sistema de televisíón digital actual. El Instituta Federal de Telecamunicaciones concederá al Sistema
- Público de Radiodifusín 24 nuevas concesiones de Televisión a instalar en I5 estados de la República Mexicana y las concesiones serán del sistema ATSC I. D que es el vigente en este mamenta en México. Es importante para la educación lograr que las concesiones se cambien para el sistema ATSC 3.0 el cual usa el misma ancho de banda que el
- anteriar sistema siendo éste tres veces más eficaz que aquel. D aceptar el atraso tecnalógica.

Almacenamiento de Energía Renovable.

Por Ing. Patricia Morales M. de Tecnoproyectos Avanzados

EI reta de la industria en general es el usa de las energías renovables en todos sus pracesos. La descarbonización. Los Sistemas de Almacenamienta de Energía san claves para la descarbanización de los sistemas energéticas, ya que san una herramienta muy versátil para proveer flexibilidad a los sistemas.

Existen actualmente apciones para maximizar la energía fotovaltaica, ya sea para la inyección a la red, almacenarla, utilizarla en fallas de suministro, ahorras de consuma e inclusa la independencia energética.

En los últimos años se ha visto un crecimiento en el mercado de energía limpia en el país, muestra de esto es el reporte publicado par la Пrganización de las Naciones Unidas (CNU) en el que sitúa a México entre los 15 países que más invierten en energías renovables.

Esta transición a energías renovables abre la puerta a nuevas aportunidades y una de las más destacadas es el almacenamienta de energía con baterías, una tecnología que comienza a tomar fuerza como un aliado íntima de las energías limpias en Méxica y el mundo.

Si bien en esta acasión nos enfocaremos en el almacenamienta de energía con baterías, vale la pena mencionar que existen diferentes formas de almacenar energía.

El sistema de almacenamienta de energía con baterías es el más destacado gracias a las ventajas que ofrece, como su respuesta rápida, su sencilla instalación y la capacidad de almacenar varias horas de energía. Además, su estabilidad permite que sean una gran solución рага реqueñas comercios hasta grandes fábricas.

Estos sistemas de almacenamienta de energía están conformados por una a varias baterías de algún elementa químico coma el litio. Para almacenar la energía, se necesita romper el enlace entre los iones de litio y sus electrones. Al hacerlo, se genera un fluja de electrones que permite la generación de energía eléctrica.

El uso más obvio y papular de un sistema de almacenamienta -almacenamienta- es el de proveer electricidad cuando falla la red eléctrica, sin embargo, tiene más beneficios y aplicaciones que esta solución.

El mayor impacto a nivel mundial en el desarrallo de los sistemas de almacenamienta es que se convierten en un aliado íntima y complemento de las energías renovables.

Para que el munda pueda hacer una transición al usa de energía 100\% renavable es indispensable contar con una solución que permita que tengamas energía proveniente del sol inclusa en las naches a del vienta inclusa cuando éste no sapla.

Los sistemas de almacenamienta permiten almacenar la electricidad que generan estas fuentes de energía limpia para utilizarlas posteriormente, lo cual permitirá al munda hacer una transición total al usa de energía limpia que de otra manera sería imposible.

Incluso en el usa particular por parte de las industrias, comercias y casas, la función de los sistemas de almacenamienta tiene beneficios mayores a solamente abastecer energía cuando falla la red.

En Méxica, el sector comercial e industrial es el que más beneficios puede obtener con un sistema de almacenamiento de energía con baterías. Uno de estas beneficios es la reducción de picos de demanda.

La demanda máxima a picos de demanda son esos mamentas dande el inmueble consume más energía.

Tadas las empresas en Méxica con una demanda superiar a los ITC kilowatts estánubicadas en la tarifa Bran Demanda en Media

AMITRA INFIRMA

Tensí́n Horaria a GDMTH, lo cual significa que el costa de la energía depende del momenta en que se consume.

El precio de la energía en este tipo de tarifas horarias puede elevar considerablemente los gastos en electricidad de las empresas. Sin embargo, esta podemos resalverla con un sistema de almacenamienta.

Las baterías del sistema de almacenamienta funcionan coma un respaldo de la red eléctrica para proveer energía en caso de intermitencias oapagones.

Una de las diferencias que más destaca en este punto es que, en comparación con las plantas de emergencia que funcionan con diésel, los sistemas de almacenamiento de energía con baterías tienen la capacidad de respuesta inmediata que permite evitar los micracortes de energía, causantes de:

- Fallas en la maquinaria de las empresas.

- Parar líneas de praducción, generando merma de producto.
- Pérdidas ecanómicas.

Aunque las soluciones para el almacenamienta de energía siguen desarrollándose y en un praceso de mejara continua, el reto para nuestro país será encontrar las distintas alternativas para incrementar el porcentaje de energía limpias utilizadas en el país.

Tecnoproyectos
$\mathrm{A} v a \mathrm{n} \mathrm{za} \mathrm{d} \circ \mathrm{s}$
Soluciones Sustentables

RADIO TRANSFORMA DE MEXICO S.A DE C.V.

RADIO FM+HD

TRANSMISOR FM ANALOGO Y DIGITAL

SERIE GVD \& NVLT

RADIO AM+HD

TRANSMISOR AM SERIE NX \& J1000

LOS PRODUCTOS DE NAUTEL CUENTA CON 4 AÑOS DE GARANTIA DIRECTO CON FABRICA

RADIO TRANSFORMA DE MEXICO S.A DE C.V.
Gobernador Rafael Rebollar No. 56 piso 2 Col. San Miguel Chapultepec 11850 México, CDMX
TEL. 55 5525-7036, 55 5511-1200, 55 5208-8308
corporativo@grupojl.com
\square

Entrega de Reconocimientos a Ingenieros de AMITRA

La mesa directiva de AMITRA: Los ingenieros Alejandro Zamora Ortiz, Segundo Vicepresidente, Jorge Ortega Reyes, Primer Vicepresidente, Aurelio Jasso, Gerente, Jesús Canela Escamilla, Tesorero, Francisco Bedolla Saldaña, Secretario, Rafael Velasco Serrano, Ingeniero del Año 2020 y Julio César López García, Presidente; sentados: Ucaima Acuña González, Primer Vocal, Gilberto García Salguero,TercerVocal y Enrique Martínez Marín, Ingeniero Regional delAño 2021.

[iudad de México el I de septiembre de 2021, se realiź comida en el restaurante Saudade Do Brazil, por motivo de la entrega de recanacimientos 2021. El Ing. Julio César López García, Presidente y la mesa directiva, fueron los anfitrianes.

El Presidente de Amitra señáó: "Los buenos ingenieros se miden en las malos momentas. Ingeniera viene de ingenio y ustedes tienen eso y más que suficiente, porque ingenio viene de crear, de prapaner, de postular y de transformar. Felicitaciones por esta bella labor que hacen.

Esta celebración vale la pena porque son personas que han sabido ganarse el respeto de la saciedad, de nuestros compañeros y de tados los medios de Radiodifusión donde laboramos, porque su aportación no soloes a AMITRA siña ala Radio y Televisión.

Su conacimienta, su capacidad de dar ejemplo y su talenta al servicio de la Industria san haberes que su gran experiencia que les ha dado y la siguen cultivando a través de los años.

Рага nuestros amigos Ingenieros del Año e lngeniera Praveedar, mi más sincero reconacimienta, y me alegra ser portador de esta пominación. Por esto y su calidad humana... iMuchas felicidades ingenieras!".

De manos del Presidente de AMITRA Julio César López, recibe Rafael VelascoSerrano, Ingeniero delAño 2020, su reconocimiento y premio de LBA Group. Abajo Enrique Martínez Marín, Ingeniero Regional del Año 2021, se le entrega su reconocimiento.

Gracias a LBA Group y al CEO Lawrence Behr, por su reconocimiento a los ingenieros mexicanos.

Rafael Velasco Serrano, Ingeniero del Año 2020.

Mario Herrera Cervantes, Ingeniero del Año 2021.

Sentadas: Teresa Hernández, Asistente de Dirección AMITRA, Lluvia Segura Blanquel, Asistente Dirección de DigitalSND y Sonia López, Gerente de Ventas de AURI es radiodifusión, de pie Ing. Jorge Ortega Reyes, Primer Vicepresidente deAMITRA.

Foto der. Un encuentro muy fraterno después de año y medio manteniendo sana distancia. De pie: Ing. Julio César López García, Presidente; sentados los ingenieros Ucaima Acuña González, Primer Vocal, Alejandro Zamora Ortiz, Segundo Vicepresidente, Francisco Bedolla Saldaña, Secretario de AMITRA.

Enrique Martínez Marín, Ingeniero del Año Regional 2021.

Ing. JoséLuis González Cortes Amigo Proveedor del Año, Radio Transforma de México.

A los costados Lluvia Segura Blanquel, Asistente Dirección de Digital SND y Teresa Hernández, Asistente de Dirección AMITRA, al centro el Ing. Julio César López García, Presidente de AMITRA.

Enlaces de datos punto a punto en radiodifusión

Por JoséToscano Hoyos / www.telecomtm.com.mx

Los primeros hilos

En los inicios de la radiodifusíñ; los estudios, transmisar y antena se localizaban en el misma sitio. Por necesidad de las antenas de la radio de AM (las primeras emisaras fueron de AM), se requiere de amplias extensiones de terrena, por la que la gran mayoría se situaban en la periferia de las poblacianes. Tal situación implicaba que tanta el personal de la emisara como quienes tenían que ver con la aperación y funcionamiento de esta, y casi todos si no es que todos, tendrían que trasladarse hasta esos lugares alejados de zonas urbanas a atender sus asuntos ahí; incluyendo a sus clientes.

Quizá par razones prácticas y de imagen, muchos radiodifusores optaban por instalar oficinas y estudios en zonas más accesibles y comerciales, situación que implicaba atro tipo de complicaciones.

Había en ese entonces dos formas de hacer Ilegar la señal de audio desde los estudios hasta la planta transmisara. Una de ellas era que la compañía telefónica local pudiera afrecer el servicio, de lo que recuerdo tenía el nombre de: línea privada que consistía en una conexíán dedicada entre un punto y otro, servicio que desde luego se padría disponer si la compañía telefónica tenía infraestructura y a la que habría que agregar la atenuación al ancho de banda audible, típica de una línea de red telefónica de redes que estaban diseñadas para un ancho máxima de 3 kHz necesarios para una conversación telefónica inteligible. La ventaja de este métoda consistía que la compañía telefónica se hacía cargo de mantener la comunicación y la desventaja era el precia, y las demoras enlaatención a las interrupciones.

La atraopción era tener un "tendida" propio. Esta es, tender un cable telefónica a dos, el segunda trazado por ruta diferente par tema de redundancia, que una vez que se conseguían los permisos para utilizar postes, algunos de la red telefónica atras de la red eléctrica, y alguna que otra azotea, se llegaba desde los estudios hasta el sitio de transmisión. La ventaja de tener tu propia red consistía que no compartes tu canal de comunicación con nadie -padías con el amplificador a cascada de amplificadores manipular los niveles y en ocasiones la calidad del audio-. La desventaja era que se requería de personal, de preferencia en buena condición física para hacer esos гесогridos, cargando herramienta, cable de repuesta, grandes escaleras y imucho, mucho entusiasma para localizar el daño, герагаг y seguir salienda al aire!

Don Juan Barajas cariñosamente Juanito - vigilante de planta en una de las tantas emisoras por las que he pasado, me platić que esa fue su actividad inicial en el radio cuando él era joven y con gran detalle me platicaba de las "peripecias" que tenían que hacer para mantener conectado el estudio conel transmisar.

Hoy muchos sitios de transmisión, de emisaras que ya tienen un cúmula de años aperando, san edificaciones parcialmente desocupadas por esa razón. Cuando hubo disponibilidad de enlaces estudia transmisor, quedó en esas instalaciones solo el transmisar y la antena.

Me considera afortunado de haber conocido personas que tuvieron que resolver problemas montándase en una bicicleta con una escalera en el hombra y una balsa de herramienta en el otra, para resolver problemas técricos que ahora solucionamos desde una computadora o dispositivo móvil, la mayoría de veces en la comodidad de una oficina y desde casi cualquier lugar del planeta.

De esta quiera escribir en esta oportunidad de la evolución de los enlaces terrestres punta a punta en la radiadifusión y algunas recomendaciones a considerar cuando se pretende instalar un sistema.

STL's

El primer Enlace Estudio-Transmisar (STL) que conocí fue de marca Martí, llevaba el apellida del propietaria de la marca. Por años, la marca fue líder de los equipos de enlace. Tanta que по ега песеsario referirse al enlace comotal: la referencia erael Martí.

Martíahora es propiedad de BE, perteneciente al Grupo Elenos.
Dentra del universa de STL's afrecidas par las diversas fabricantes una gran mayoría, aun en la actualidad, son análogos. Algunos tienen la apción de transportar audio digital y también hay los que son digital puras, reciben audio análogo o digital, procesan y transmiten digitalmente y del atra lado entregan audio análogo o digital.

La radio en FM пасе monaaural, cuanda ya la música grabada era estereafónica. Con el pasa del tiempa la estereafonía se incorpora a la transmisión de FM, canvirtiéndose en FM estereafónica. La radio de AM incursiona en la década de los años 30 en la estereafanía y asuntos más legales que técricas terminaron con esa aspiración.

SON TIEMPOS DE CAMEIO.. QUé TAL DE ANALÓcICO A DIGITAL Abraadezast ES LA SOLUCIÓN

El nuevo ALB EtherMPX es un sistema STL IP diseñado para transportar MPX en tiempo real con señal RDS o L/R desde el estudio al transmisor a través de una red TCP/IP a un precio verdaderamente asequible.

$3(5$ EL MEJOR BROADCAST
 EQUIPO

Estamos en México, con ventajas que ningún otro distribuidor en los EEUU te puede ofrecer.

Facturación CFDI en moneda nacional
Servicio de importación y envío hasta su ciudad
Pagos en pesos o dólares americanos
El mejor servicio de nuestros representantes en todo el país

Daniel Acevedo: (81)1669-7148 / daniel@305broadcast.com Alfonso Hurtado: (55)5504-6904 / ahurtado@305broadcast.com Ulises Ramírez: (55)6962-6769 / ulises@305broadcast.com Alfonso López: (305)200-3322 / info@305broadcast.com

Llámanos, escríbenos o mándanos un WhatsApp

El tema de la transmisión estereafónica crea la necesidad de utilizar dos equipos STL, uno para cada canal de audia. La disponibilidad de frecuencias en regiones con muchas emisoras de radio dio origen al problema de la disponibilidad de espectro.

Una solución inteligente fue la de utilizar una variante que empleaba el misma principio de la multiplexación (MPX) en la transmisión de la FM estérea, dándale vida a los STL de señal compuesta que, por una sola frecuencia, llevaban de un punta a atro el audia estereafónica.

En la actualidad tadas las marcas que fabrican STL's tienen la capacidad de llevar una señal monaaural ouna MPX.

En la mayoría de las emisaras de FM tienen sus sistemas radiantes en sitios que no son las azoteas de sus aficinas y requieren de un STL.

Telemetría, manitarea y contrul a distancia.
El asunta de llevar el audio desde los estudios al sitio de transmisión está resultto. Dtras de las necesidades que la radiodifusión en general tiene es la de poder monitorear, controlar y medir parámetros de operación de sus equipos en los sitios remotos de transmisión y de los ingenieras, Itener WiFi en la planta! Tados los equipos transmisores, tanta de radio como de televisión, y ya también de audio, desde hace algunos añas incorporan interfases remotas, con el pasa del tiempo
éstas han evolucionado hasta las actuales basadas en el maderno protacola de camunicación TLP/IP.

Todas esas interfases remotas requieren de un medio de comunicación y la gran mayoría de los STL instaladas, по tienen la capacidad de transportar la información; muchos de ellos aun siendo digitales enlazan en una sola dirección у пп aperan el protacola TCP/Р que permite la comunicación bidireccional. Para ello se requiere de atra tipode enlaces.

Enlaces de datas

La tecnología hay ofrece equipos que pueden ser utilizados como enlaces Punto a Punto (PtP), que aperan en frecuencias de usa libre, que по геquieren de una autarización explicita del órgano regulador.

De ello se han valida cientas de proveedores de servicia de internet (ISP), que utilizando enlaces Punta Multi Punta (PtMP) y que, sin una licencia para comercializar internet, lo hacen en lugares rematos a dande los concesionados autarizados todavía no llegan.

En el mercado se ofrecen varias marcas, ninguna tiene que ver con equipa de radiodifusión, de las cuales al menas tres ofrecen productas con capacidad para resolver las necesidades de la radiodifusí́n: Ubiquiti Networks, Mikrotiky Cambium Networks.
,

Adquirir, instalar y poner en marcha este tipo de enlaces de datos tiene sus particularidades, que tan solo por usar el espectro radioeléctrico muchas de ellas son similares a las de las enlaces tradicionales, especificamente a las cansideraciones técnicas, además de la complejidad que implica que operan en frecuencias altas, del orden de los gigahertz; que utilizan la técnica de transmisión TDMA (Time Division Multiple Access) Accesa Múliple par División de Tiempa, la madulación de amplitud par cuadratura (DAM) y la banda de libre accesa.

Planificación del enlace, consideraciones técnicas. Zona de Fresnel

Uno de los fenómenas de interferencia que se presentan en la prapagación de señales se le canoce como Efecto Fresnel. La interferencia por el Efecta Fresnel consiste en que parte de la energía radiada sufre de desviación por reflexión, o de atenuación por absorción a debida a la multitrayectoria en una zona entorna a lo que se identifica como línea de vista entre dos puntos, gráficamente es un elipsoide que representa un volumen de energía finito que existe entre una antena emisora y una antena receptora. La Zona de Fresnel, llamada así en memoria del físico francés Agustín Fresnel.

Es importante señalar que la curvatura de la tierra no es significativa para enlaces cortas, pera su efecto sobre la Zona de Fresnel es significativo al aumentar la distancia.

Desladistanciaentre el emisor y el receptor: res el radio de lazona Fresnel. Una de las fórmulas para calcular laZona de Fresnel se utiliza la siguiente:

Dande:

r Radio de laZonade Fresnel.
n Númera de Zona de Fresnel (n=l equivale ala primeraZona de Fresnel, desfase de 180 grados).
$\boldsymbol{\lambda}$ Longitud de onda de la frecuencia, en metros.
d_{1} y d_{2} Distancia al punto medio oal obstáculo mas cercaña al línea devista.

Рага garantizar un excelente desempeña del enlace se recomienda que no existan oclusiones en el IIDO\% del elipsoide. Sin embarga, habrá ocasiones que no se puede evitar que exista alguna, bajo esta circunstancia la zona libre no debe ser menor del 60%. Cuando es necesario que el enlace se establezca sobre una superficie de agua el elipsoide debe estar libre de aclusiones al IIDO\%.

Hace algunas meses, atendí una solicitud de servicio para realizar mantenimienta preventiva en unas emisaras de radia. Ambas emisaras tienen sus estudios en una ciudad principal y mediante enlaces digitales, y de datos, hacen llegar el audia hasta los sitios de transmisión en las poblaciones dande reside la concesión. Durante mi estancia me comentaron que en la emisara más lejana tenían el problema de que su enlace digital, durante el día sufría de interrupciones, por lo que decidieron incrementar la potencia colocanda un amplificador de RF. Las interrupciones continuaron. Finalmente decidieron utilizar el enlace de datos, con códec de audio en ambos extremos.

La distancia de enlace, entre los estudios y la emisara con el problema es de 40 kilómetras y el equipo es un Moseley digital que opera en la banda de 225 MHzaZ40 MHz.

Procedí al cálcula de la Zona de Fresnel, dando coma resultada que las antenas deberían de estar a 140 metros sobre el nivel del terreno. En el extremo del transmisar (del enlace) la antena estaba a apraximadamente 25 metros del nivel de terreno y la altura de la antena receptora alrededor de 50 metros. Aunque la antena receptora utilizara tada la altura de la torre de transmisión, de ICO metros, el enlace no es factible, considerando además la atenuación, por longitud, del cable coaxial de la antena receptora.

El cálculo de la Zona de Fresnel en condiciones dande se podría suponer que hay suficiente línea de vista, es necesario y recomendable hacerla; considerar el resultado de éste contribuye a tener un enlace confiable y de buena calidad, sea del tipo y la marca que sea.

AMITRA INFIRMA

BROADSAB - SHIVELY

Elemento de Antena modelo SLV

A.- Banda Ancha y ajustable en campo en toda la banda de FM.
B.- Cada elemento soporta 2.5 kwtts y hasta 10 elementos.
C.- Polarización Circular.
D.- Peso mínimo solo-18 kgs por elemento y mínima carga al viento.
E.- Mejor relación Precio/Beneficio.

BROADSAB felicita a los ganadores de 2 ah́tenas SHIVELY que rifamos en la pasada Asamblea Nacional CIRT, siendo los ganadores:

Lic. Luis E. Maccise de Capital Radio y el* Lic. Mario Ávila Roque de Radio Fórmula. Muchas ;Felicidades!

13>>>
Eje 5 Sur Eugenia 240 Desp. 5, Col. Narvarte, CDMX, C.P. 03020 Tels.: 55 5539-8666 y
AUDIO Y TELEVISION 55 5672-4876 broadsab@hotmail.com finanzas@broadsab.com.mx f: sergiobroadsab

Presupuesta de potencia

Una vez que se confirma que existen facilidades para que las antenas pueden ser colocadas a la altura correspondiente, hay que proceder con el cálcula del presupuesta de patencia. Este cansiste en:

- Las ganancias y pérdidas en la parte de transmisión.
- Lapérdidaenlatrayectoria.
- Las ganancias y pérdidas en la parte de recepción.

En mi experiencia, el nivel mínimo de señal de un enlace PtP, utilizado para audio o video codificado que tenga baja latencia, no sufra interrupciones por descarga y carga del buffer en el códec y sea un enlace canfiable, no debe de tener menas de 60 dBm en los extremos. Recordemos que este tipo de enlace es bidireccional.

Tengo el casa de un enlace para la emisara de unas de mis clientes en dande por necesidades de terreno se instalá un punta de repetición, esta es que, para enlazar una pablación con otra, se utilizaran dos enlaces, uno de 21 kilómetros y atro de 17 kilómetros. Ambas enlaces se calcularan para 6 dBm de señal. Hoy por ese enlace transita audia entre una cabina en la población remata y la de la pablación principal, el servicio de internet de la aficina principal (adquirida en la población remata) y telemetría del sitio de transmisión, ya que el punta de repetición es también el sitio principal de transmisión de la emisara. He medido el trático y hay momentos del día que tiene picos de 2 MBps con latencia apenas percibida en el audio y sin interrupcianes en los servicios de datos. Ese cliente tiene 8 equipos en 4 redes utilizando enlaces PtP рага diversas aplicaciones.

Pérdida en la trayectaria de propagación

Una vez que la onda electromagnética ha salido de la antena, ésta se atenúa en la trayectoria hacia la antena destino. De acuerda con la recomendación de la Unín Internacional de Telecomunicaciones (UIT) UIIT-R P.525-4, la pérdida básica que sufre la señal en el espacia libre de un enlace PtP, es:
$L_{b i t}(\mathrm{~dB})=32.4+2 \mathrm{O} \log \mathrm{f}+2 \mathrm{D} \log \mathrm{d}$

Comentarios finales

Dande:

L_{bf} Pérdida en el espacia libre en dB.
f Frecuencia en Mhz.
d Distancia en kilómetros.
El cálcula del presupuesta de potencia es una herramienta que ayuda a la configuración carrecta de los componentes del enlace; radios, línea de transmisí́n y antena.

Frecuencia de operación

Para los casos de enlaces estudio-transmisor asignados para uso en radiodifusión, el Órgana Regulador ya tiene asignados algunos segmentos de frecuencias, según el usa y aplicación, por lo que las frecuencias son asignadas mediante un procedimienta de solicitud.

En el siguiente enlace, podrán encontrar las bandas de frecuencia destinadas alos servicios auxiliares en México:

Http://www.ift.arg.mx/radio-y-televisian-abiertas/servicios-auxiliares-la-radiodifusion

Para los casas de Enlaces Punto a Punta que aperan en las bandas de uso libre, hay que tener mucho cuidado ya que desde la configuración inicial se solicita indicar el país donde va a aperar el еquipo.

Los segmentas de frecuencias para usa libre no tienen el mismo númera de frecuencias, cada país de acuerda con su administración local madifica estos segmentos. Es una práctica común elegir un país diferente ya que se puede disponer otras frecuencias, práctica que podría resultar en interferencias a atras servicias y en su momento ser motivo de sanción. Hay que tener mucho cuidado con esta.

Para el caso de México, se pueden cansultar las bandas de frecuencias de uso libre en el siguiente enlace:

Http://www.ift.org.mx/espectro-radioelectrico/bandas-de-frecuencias-del-espectra-radioelectrico-de-uso-libre

Recientemente entraran en vigor el Procedimienta de Evaluación de la Conformidad y Disposiciones Técricas orientadas a la Homologación de equipos que se conectan a redes públicas de telecomunicaciones, uno de los propósitos de estos procedimientos es controlar el ingreso al país de equipos de camunicaciones que cumplan con las disposiciones técnicas con el fin de que puedan comercializarse. Muy probablemente los futuros equipos que operan en bandas de frecuencia de uso libre, que se ofrezcan en el mercado mexicana traerán los candados para acotar el uso de estos equipos, a la banda de frecuencias autarizadas.

Si la necesidad es la de establecer un STL les sugiera dedicar tiempa al análisis de las condiciones de la trayectoria desde los estudios hasta el sitio de transmisión tamando en cuenta las recomendaciones. No tadas las bases de datos tapográficas en las que se basan las ayudas en la web son 10% seguras. Si se trata de un enlace de datas, para vigilar la aperación de forma remata del sitio de transmisión a para otros usas como la seguridad, también consideren hacer las evaluaciones técnicas recomendadas a fin de adquirir los equipos, sean radios separados de antenas oradios conla antena integrada.

Hay ocasiones que las sugerencias de las vendedores no funcionan como se necesita. Una persona me pidí́ en alguna ocasión que le sugiriera un equipo de datas (PtP) para enlazar una planta transmisara con sus estudios transportando audio codificado. Realice los cálculos, determiné las potencias, busque el equipo que mejor se adaptaba a su necesidad y le envié la recomendación. A los pocos días me dij́́ que había acudido a una tienda y que en el mostrador le propusieron un radia para 30 kilómetros, el dable de lo que realmente neesesitaba, por la quinta parte del precio del radio que le sugerí. Le exprese mi beneplácito de que encontró algo más económico. Pasaron unas 4 semanas y me valvióa allamar para decirme que el enlace se cortaba, y me preguntaba qué se podría hacer. Le dije que lo consultara con su vendedar y si no le daba una solución, que atendiera mi гecomendación.

No tengo relación comercial con ninguna marca de las mencionadas, ni preferencia a inclinación par alguna, todas san buenos equipas. Рагa quienes estén interesados a tengan necesidad de implementar un enlace, sea STL o de datos PtP consideren realizar los cálculos y estimaciones que aquí se recomiendan y después utilicen las ayudas que cada uno de los fabricantes ofrecen, sea en su página web o a través de aplicaciones para computadaras a dispositivos máviles.

El usa de enlaces de datas PtP coma enlaces de saporte al STL, a coma enlaces principales con audio codificado es una misión crítica, por lo que se requiere que sean certeros y confiables.

Direcciones de los enlaces dande podrán realizar simulaciones de formagratuita:

- Ubiquiti Networks: https://link.ui.com/\#
- Mikratik: https://mikratik.com/client/
- Cambium Networks ofrece descargar un programa que se llama LINKPlanner en el siguiente enlace:

> https://support.cambiumnetworks.com/files

- Hay un programa de predicción de cobertura que puede descargarse o utilizarse en línea, hecho por un radiaaficionado canadiense, para radioaficionados. El programa está limitado a las frecuencias que se usan en radiaafición, pera que puede ser un referente, pues no tiene fines camerciales, aquíel enlace:
https://www.ve2dbe.com/englishl.htm|

Victor Reyes
Atleta Paralimpico

ACREDITACIÓN DE PERITO

RAFAEL VELASCO SERRANO

RADIODIFUSIÓN Y TELECOMUNICACIONES
\# Registro: IFT-P-0051-2017

NSTIIUTO FEDERAL DE
FLECOMUNICACIONES
ACREDITACIÓN DE PERITO

(-)

Oift
 NSIITUTO FEDERAL DE TELECOMUNICACIONES

ACREDITACIÓN DE PERITO

ift
NSIITUTO FEDERAL DE
NIECOMUNICACIONES
ACREDITACIÓN DE PERITO

NOMBRE:

J. JESUS CANELA ESCAMILLA

 MATERL:RADIODIFUSIÓN
(Registro: IFT-P-0048-2017

frANCISCO BEDOLLA SALDANA MATERIA:

RADIODIFUSIÓN
\# Registro: IFT-P-0025-2017

Oift

ACREDITACIÓN DE PERITO

GERARDO ABRAHAM CARREÑO LÓPEZ

RADIODIFUSIÓN

i ift NSIITUIO FEDERAL DE FIECOMUNICACIONES

ACREDITACIÓN DE PERITO

NOMBRE:
ROBERTO GALICIA SALAZAR

RADIODIFUSIÓN
\# Registro: IFT-P-0014-2017

especialidad de Perito en Radiodifusióny Telecomunicacionesyambas. Nos sentimosorgullosos de ustedes.
 Gracias porcompartir sus experiencias.

Oift

INSIITUIO FEDERAL DE
TELECOMUNICACIONES
ACREDITACIÓN DE PERITO

[^0]: ${ }^{1}$ ACUERDO mediante el cual el Pleno del Instituto Federal de Telecomunicaciones aprueba y emite los Lineamientos mediante los cuales el Instituto Federal de Telecomunicaciones establece los criterios para el cambio de frecuencias de estaciones de Radiodifusión Sonora que operan en la banda de amplitud modulada a frecuencia modulada. DOF. 24/112016.

[^1]: ${ }^{2}$ ACUERDO mediante el cual el Pleno del Instituto Federal de Telecomunicaciones expide la Disposición Técnica IFT-011-2017: Especificaciones de los equipos terminales móviles que puedan hacer uso del espectro radioeléctrico o ser conectados a redes de telecomunicaciones. Parte 1. Código de Identidad de Fabricación del Equipo (IMEI) y funcionalidad de receptor de radiodifusión sonora en Frecuencia Modulada (FM). DOF. 27/04/2017.

[^2]: ${ }^{3}$ DECLARATORIA de vigencia de la Norma Mexicana NMX-I-325-NYCE-2021. DOF. 06/09/2021

[^3]: 'datacasting

