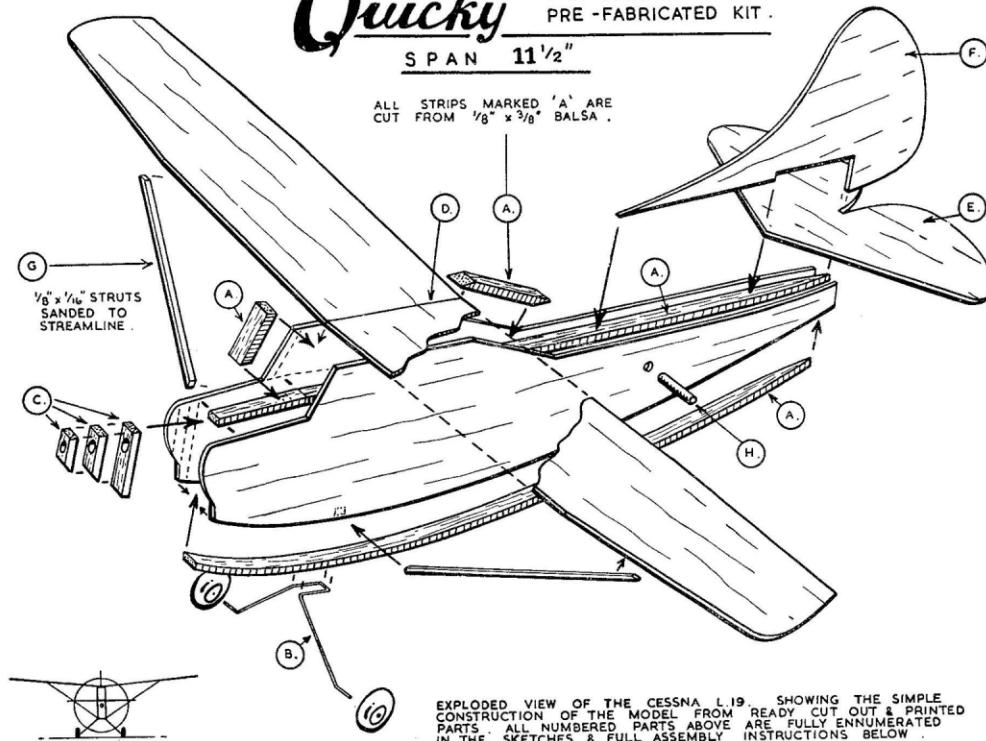
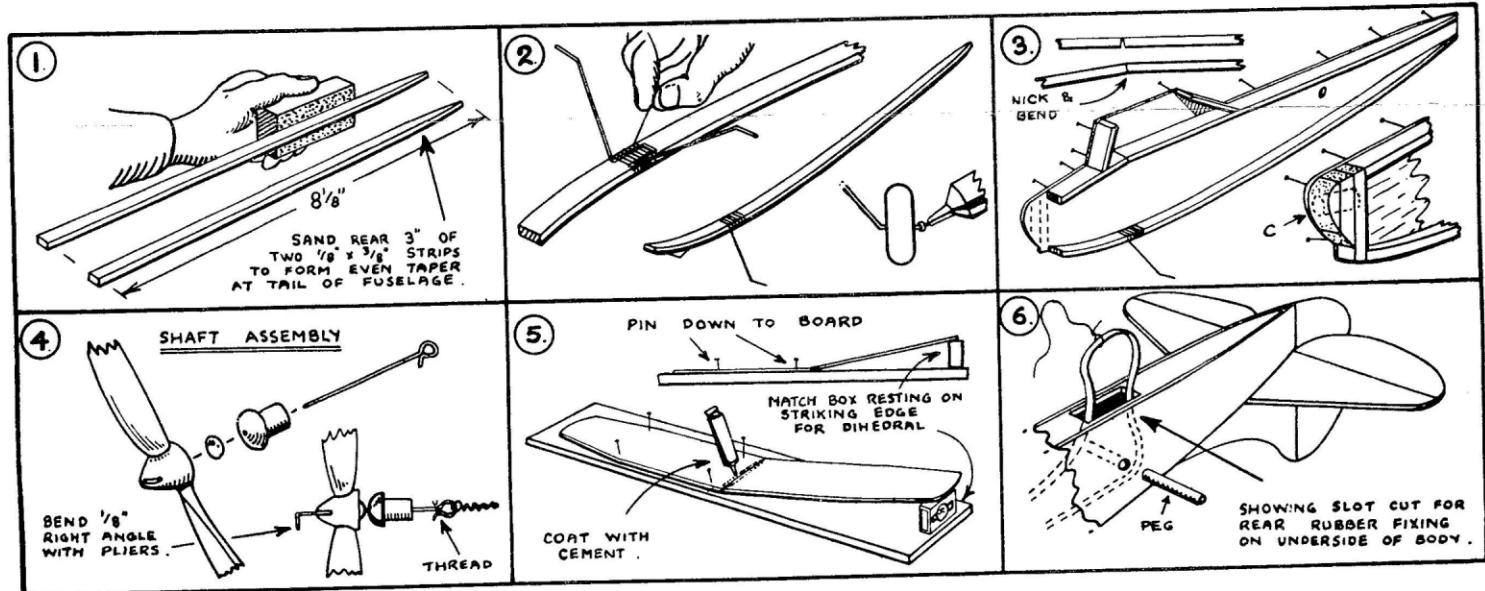


VERON


N°.1. CESSNA L.19. ("BIRD - DOG")
U.S. FORCES LIGHT LIAISON AIRCRAFT.

Quicky'


PRE - DECORATED &
PRE - FABRICATED KIT.

SPAN 11 1/2"

ALL STRIPS MARKED 'A' ARE
CUT FROM $1/8" \times 3/8"$ BALSA.

EXPLODED VIEW OF THE CESSNA L.19. SHOWING THE SIMPLE CONSTRUCTION OF THE MODEL FROM READY CUT OUT & PRINTED PARTS. ALL NUMBERED PARTS ABOVE ARE FULLY ENUMERATED IN THE SKETCHES & FULL ASSEMBLY INSTRUCTIONS BELOW.

This new series of VERON "QUICKY" Scale Flying Models are the last word in simplicity. Accurately die-cut, pre-decorated parts can be assembled in a jiffy, to make nifty little semi-silhouette models with an amazing performance. You need only balsa knife, cement, pins, pliers and thread to complete these fascinating little models.

Study the plan carefully and identify all the parts in your kit. The "exploded" drawing does not necessarily denote the sequence of assembly, so read all the instructions carefully. Use a quick-drying balsa cement. Dopes are not necessary as all the parts are ready coloured. Extra details can be applied with any ball-point pen, and finish to the edges and cabin, etc., can be applied with any ball-point pen.

FUSELAGE.

Cut the strips of $1/8" \times 3/8"$ to length as indicated in Diagram 1. Sand the last $3/8"$ of the fuselage top and bottom strips at the tail-bay to an even taper with hardwood block and sandpaper. The lower one can be steamed to a gentle curve at the front by bending over a steaming kettle spout or by rolling with a pencil, or even by nicking with a knife and filling the nicks with cement.

Bind the undercarriage wire to the lower strip with thread, $13/16"$ from the front. Coat the thread well with cement. The wheels, which can be added later, are retained with a blob of cement upon the end of the wire. See Diagram 2. Check that each axle is square and that both are symmetrical to the lower fuselage strip.

Lay the two fuselage sides together over the building board checking that their edges are in alignment irrespective of the printed outline.

Cut also the

hole for the rear dowel. Cement the $1/8" \times 3/8"$ strips "A" to the outline of one fuselage side—on the inner face, and secure with pins whilst drying. See Diagram 3 for actual layout of all these strips. Then add the opposite side, checking that position as indicated in the main drawing; then the fin "F" is located each is level, one with the other, drawing the sides together closely at the rear. Thin cellophane (from cigarette packets) may be used for wind-screens when desired.

TAIL ASSEMBLY.

The tailplane "E" is cemented firmly and squarely in its respective position as indicated by the exploded diagram. Check that the dihedral is even both sides and the wing square and level with the fuselage.

When set, the wing is firmly located with cement in its respective position as indicated by the exploded diagram. Check that the dihedral is even both sides and the wing square and level with the fuselage.

PROPELLER UNIT AND MOTOR INSTALLATION.

Add laminations "C," of $1/8" \times 3/8"$, to complete the nose as indicated in Diagram 3. These are double-coated with cement to strengthen, and only when quite dry have a hole cut with the sharp point of a balsa knife and reamed with $1/8"$ drill or suitable bradawl to closely fit the plastic bush for supplied. Sand to shape of the side lines.

The rear rubber fixing holes must be exactly opposite each other. Rub cement all around the edges of the holes and insert the dowel, revolving it and sliding through from side to side to force the cement into the grain to strengthen the wood. The dowel is NOT cemented in place but is several turns of thread to removable to permit fitting and replacement of the rubber band used for the motor.

Thread the wire shaft through the plastic bush, through the cup washer and then the propeller boss. With the hook close to the rear face of the bush, bend the shaft at right angles $13/16"$ in front of the propeller boss for $1/2"$ down as in Diagram 4. This angle will then form the engaging drive for the shaft into the slot in the propeller boss. A touch of oil will help free running of the assembly and prevent wear.

The rubber motor is looped on to the shaft and the hook secured with several turns of thread to prevent the motor slipping free of the hook whilst winding. The rubber is best lubricated with a small amount of glycerine, soft soap or castor oil to give smoothness of running and longer life to the motor.

A slot is cut with the sharp point of the balsa knife in the lower edge of the fuselage opposite the rear rubber fixing dowel as in Diagram 6. Tie a length of thread to the free end of the rubber motor and feed the thread (weighted with a hair clip or bent pin) through the nose and down the fuselage, until it can be pulled through the rear slot. Then free the thread and catch the rubber loop of the motor with the dowel as it is pushed through the fuselage.

BALANCING AND FLYING.

The model should be test glided in very calm conditions over a grassy field or lawn. Launch at moderate speed very slightly nose down. Do not wind the motor yet. If the model glides steeply into the ground, bend the rear edge of the tailplane slightly upwards or add very small trim tabs of gummed paper tape to the trailing edge. If the model tends to climb and stall in a nose-up attitude, bend the tailplane rear edge very slightly down or perhaps add plasticine or small panel pins to the nose of the model as ballast.

A small gummed paper tape trim tab may be fixed to the fin trailing edge for directional trim. The motor (lubricated) should then be wound to 50 turns and the powered flight checked. If satisfactory, this may be increased by 50% to a maximum of 300 turns.