

Operating Instructions for Level Sensor

Model: NGR

Contents

Contents

1 NGR level sensor	4
1.1 Principle of operation	4
1.2 Safety notes	4
1.3 Fields of application	4
1.4 Installation conditions	
1.5 Electrical connection	8
1.6 Display	8
1.7 Mounting the coaxial tube	
1.8 Shortening/replacing the probe	10
1.9 Mounting the probe rod	12
2 Commissioning the NGR	13
2.1 Quick commissioning (with factory settings	5)13
2.2 Advanced commissioning	
2.3 Foam commissioning (with factory settings	3)15
3 Con iguring the switching outputs	17
3.1 Switching hysteresis and window function.	
3.2 N/O output with con igurable hysteresis	
3.3 N/C output with con igurable hysteresis	
3.4 N/O output with window function	
3.5 N/C output with window function	
3.6 N/O output with error signal	
3.7 N/C output with error signal	22
4 Con iguring the analog output	
4.1 Automatic signal detection	
4.2 Current output 4-20 mA	
4.3 Voltage output 0-10 V	23
5 Advanced functions	
5.1 Expert mode	
5.2 Filtering measured values	
5.3 Testing the con iguration	
5.4 Con iguring the probe length	
5.5 Teaching in static interference signals	
5.6 Evaluating signal quality	
5.7 Changing the coaxial cable length	
5.8 Activating the display lock	27

Contents

5.9 Selecting the display unit (millimeter/inch)	27
5.10 Setting the offset	
6 Menu overview	29
7 Troubleshooting	37
7.1 Error message on the display	
7.2 Operating the display	
7.3 Outputs	39
7.4 Behavior	
8 Technical data	41
8.1 Features	41
8.2 Performance	41
8.3 Reference conditions	42
8.4 Measurement accuracy	43
8.5 Mechanics/materials	45
8.6 Electrical connection values	45
8.7 Environmental conditions	46
8.8 Dimensional drawings	46
8.9 Factory settings	
9 Accessories	50
10 Maintenance	51
11 Returning the level sensor	51
12 Disposal	51
13 Medium list	51
14 EU Declaration of Conformance	58

1 NGR level sensor

1.1 Principle of operation

The NGR uses TDR (Time Domain Reflectometry) technology. This is a process to determine transit times of electromagnetic waves. The sensor electronics generate a low-energy electromagnetic pulse, which is linked to and runs along the probe. If this pulse strikes the surface of the liquid to be measured, a portion of the pulse is reflected there and is conducted back up along the probe path to the electronics, which then calculate the level based on the time difference between the sent and the received pulse. The sensor can output this level as a continuous measured value (analog output) and can also derive two or four freely positionable switching points from it (switching outputs).

1.2 Safety notes

- Read the operating instructions prior to commissioning.
- These operating instructions are valid for devices from firmware version 4.00.
- Connection, mounting, and setting may only be performed by trained specialists.
- ■The NGR is not a safety component under the EU Machinery Directive.
- Observe national safety and work safety regulations.
- Repairs may only be carried out by the manufacturer. Altering or tampering with the device is not permitted.
- Wiring work and the opening and closing of electrical connections may only be carried out when the power is switched off.
- The radiated power is far lower than that from telecommunication equipment. According to current scientific research, the operation of this device can be classified as safe and nonhazardous.
- Incorrect handling or improper use can lead to malfunctions in your application.

1.3 Fields of application

The innovative TDR technology enables reliable level measurement which is largely application-independent. The NGR is suitable for both continual level measurement and limit level detection in nearly all liquids.

It is not affected by changes in the properties of the liquids to be measured. The NGR can be used in metal containers or bypass/immersion pipes. A coaxial tube is required for use in plastic containers.

1.4 Installation conditions

The NGR is mounted vertically from above into the container or bypass, using its process connection. The NGR level sensor has a G 3 4 or 3 4" NPT threaded connection. Observe a minimum connection diameter in accordance with the following Diagrams 1 and 3. The NGR must be installed so that after mounting there is sufficient distance to other tank components (e.g., supply tubes, other measurement devices), the container wall, or the container bottom. Minimum distances are also described in Diagrams 1 and 3. The NGR can also be used in a metal immersion pipe or bypass. The installation conditions are shown in Diagram 2. Ensure that there is a good metallic connection bet een the NGR measuring de ice and the tank bypass. When operating the sensor, ensure that the ambient temperature is not above or below the limits. Insulating the sensor housing is not permitted for tanks with hot media. When positioning the device, ensure that the sensor is not directly exposed to the filling flow. The sensor housing can be rotated 360°, allowing for the cable outlet to be positioned freely.

Installation in a container

Note: The distances are the same for the sensor with remote amplifier.

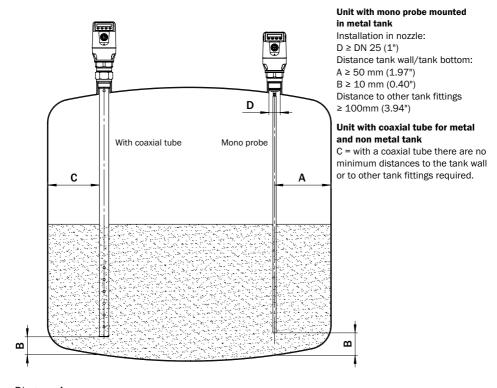


Diagram 1

Installation in a metal immersion tube or metal bypass

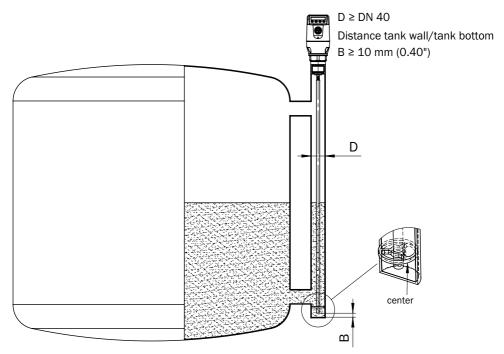


Diagram 2

Centering: To prevent contact between the probe and the bypass pipe during oscillations, the probe should be centered according to its length and depending on the diameter of the bypass pipe. To do this, it is necessary to insert one or two centering pieces.

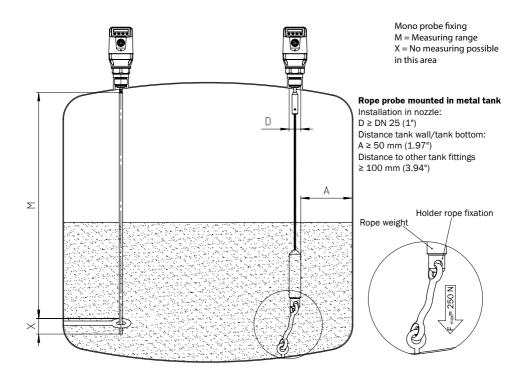


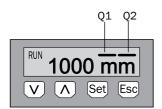

Diagram 3

Tank welds can affect the measurement accuracy.

1.5 Electrical connection

The sensor is connected using a pre-assembled female cable connector with $1 \times M12$ plug connector (5 or 8-pin). With the power switched off, plug the female cable connector into the sensor and screw it tight. Connect the cable according to its function. After the supply voltage has been applied, the sensor carries out a self-test. Once installed, the sensor is ready for operation on completion of the self-test (< 5 s). The display shows the current measured value.

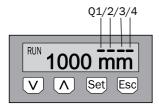
- 1 L+: Supply voltage, brown
- 2 Q .: Analog current/voltage output, white
- ③ M: Ground, reference potential for current/voltage output, blue
- ④ C/Q₁: Switching output 1, PNP, black
- (5) Q₂: Switching output 2, PNP/NPN, gray

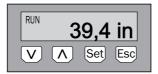

- L⁺: Supply voltage
- ② Q₂: Switching output 2, PNP/NPN
- ③ M: Ground, reference potential for current/voltage output
- 4 C/Q₁: Switching output 1, PNP/
- S Q₃: Switching output 3, PNP/NPN
- 6 Q4: Switching output 4, PNP/NPN
- ② Q_A: Analog current/voltage output
- 8 No function

The wire colors for 8-pin cables are not uniform. Always note the pin assignment of the sensor.

1.6 Display

All lengths specified (in mm) in the menu refer to the end of the probe or for a configured offset (see "5.4 Configuring the probe length") on the tank bottom. You can access the menu by pressing the Set pushbutton for at least three seconds.


Variants with two switching outputs



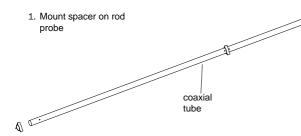
Note: The statuses of the switching outputs are indicated in millimeters by bar graphs above the unit. This display is not available when inches are selected as the unit.

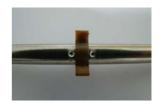
Variants with four switching outputs

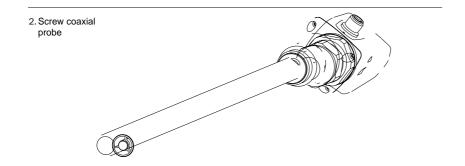
Arrow pushbuttons: For navigating in the menu and changing values

Set pushbutton: For saving and confirming

Esc pushbutton: For exiting the operating menu step-by-step


1.7 Mounting the coaxial tube


Retrofitting of coaxial probe: Mount the spacer on the rod probe

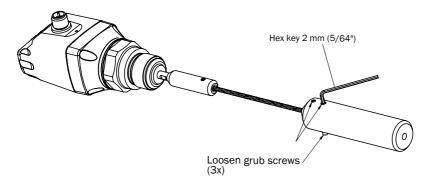

(first one at approx. 500 mm from thread, then every 500 mm) and make 2 to 3 punch marks on both sides of each spacer on the rod probe. Do not pull the spacers over the punch marks.

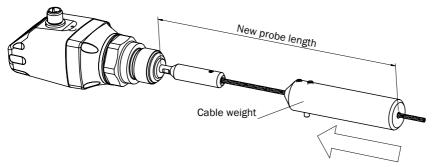
Punch marks prevent sliding of the spacer in both

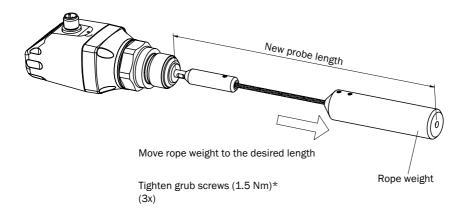
directions.



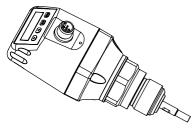
1.8 Shortening or replacing the probe rod/cable probe*


If the probe rod or cable probe* is too long for the application, it can be shortened to the container height. In this case, you should not shorten the probe beyond its minimum length of 100 mm.

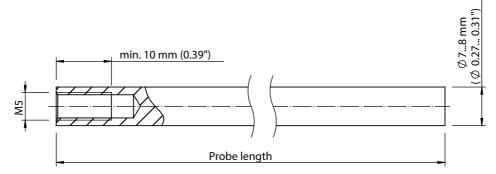

Procedure: Shorten the probe rod or cable probe* as desired. Set the new probe length in the NGR as described in Chapter "5.4 Configuring the probe length". Ensure that this correction corresponds to the probe length, because an incorrect value in the *Length* menu has a direct effect on measurement accuracy and can lead to faults. The probe rod or cable probe* can be replaced on the NGR. Use a suitable tool. If the system experiences strong vibrations, secure the probe with thread locker.


* in preparation

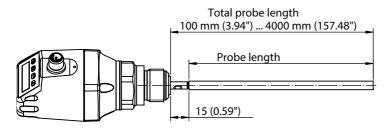
Shortening the cable probe*



Move cable weight to the desired length


^{*}We recomend to use thread locking fluid to secure the grub screws

1.9 Mounting the probe rod


With the NGR, the probe rod can be modified by the customer. The specifications for the probe rod should be as follows:

- Probe rod diameter: 7 mm to 8 mm
- Probe rod female thread: M5
- Female thread length: min. 10 mm
- Material: Stainless steel

- Total probe length: 100 mm to 4,000 mm
- Total probe length = 15 mm + probe rod length

Set the total probe length as described in Chapter "5.4 Configuring the probe length". The *EXPRT-Config-Length* menu is password protected. If the system experiences strong vibrations, secure the probe with thread locker.

2.1 Quick commissioning (with factory settings)

Quick commissioning is used in applications under reference conditions (see Chapter 1.4 "Installation conditions").

The following information applies:

- Use in metallic containers or immersion/bypass pipes
- Use in plastic tanks with a coaxial tube (see Chapter "10 Accessories")
- Situations where the liquid to be measured has a DK value of > 5 (see Chapter 14 "Medium list")

Commissioning

- 1. Mount the sensor according to the installation conditions (see Chapter 1.4 "Installation conditions" and 1.7 "Mounting the coaxial tube").
- 2. The container must be empty or the level must be at least 200 mm below the end of the probe.
- 3. After mounting, launch the AutCal menu item.
 - Press and hold the Set pushbutton for at least 3 secs.
 - Use the Set pushbutton to confirm the AutCal menu item and then use it again to confirm the security question Ok?.
 - The AutCal function is confirmed with !CalOK.
- 4. Configure the outputs (see Chapter 3 "Configuring the switching outputs" and Chapter 4 "Configuring the analog output").

Note: If the *AutCal* function has been confirmed with !NoSig, relaunch *AutCal*.

If you are encountering problems, see Chapter 7 "Troubleshooting".

2.2 Advanced commissioning

Advanced commissioning is required when quick commissioning is not sufficient or if one of the following situations applies:

- The liquid to be measured has a DK value of < 5 (see Chapter 14 "Medium list")
- There are tank components which can interfere with the measurement signal
- There are extreme ripples on the surface of the liquid
- There are variations in the installation conditions (see Chapter 1.4 "Installation conditions")

Commissioning

- 1. Mount the sensor according to the installation conditions (see Chapter 1.4 "Installation conditions" and 1.7 "Mounting the coaxial tube")
- 2. Log into expert mode (see Chapter 5.1 "Expert mode")

- 3. Select the measuring mode
 - Access the EXPRT-CONFIG-MeasMd menu using the arrow and Set pushbuttons
 - HiSpd: max. length = 2,005 mm, response time < 400 ms
 - HiAcc: max. length = 6,005 mm, response time < 2,800 ms, more stable measured values, recommended for liquids with low DK values and where TrsHld is < 70
- 4. Static sources of interference in the tank
 - Static sources of interference in the tank generated by tubes, beams, couplings, or a cleaning ball are taught into the system as standard.
 - Access the EXPRT-CONFIG-CalRng menu using the arrow and Set pushbuttons.
 - The following information applies:
 - $^{\circ}$ Teach-in depth starts from the NGR process connection $^{\circ}$

Teach-in depth should cover all interference signals

- Maximum teach-in depth (recommended) = probe length
- Set the value range between 95 and 6,005 mm
- 5. Run the AutCal function
 - Access the AutCal menu using the arrow and Set pushbuttons.
 - The following information applies: The probe must not be covered with liquid in the CalRng set in step 4 (teach-in depth + 200 mm).
 - Use the Set pushbutton to confirm the AutCal menu item and then use it again to confirm the security question Ok?.
 - The AutCal function is confirmed with !CalOK.
- 6. Analyze the signal quality
 - The signal quality can be analyzed when the device is installed ("5.6 Evaluating signal quality")
 - In the event of problems:
 - Reduce the value in the EXPRT-CONFIG-TrsHld menu
 - Set the parameter in the EXPRT-CONFIG-MeasMd menu to HiAcc
 - Switch on the filter in the Set filters menu
 - Reduce the parameter in the EXPRT-CONFIG-MaxCol menu
- 7. Configure the filter (see Chapter "5.2 Filtering measured values")
- 8. Maximum change of level/plausibility check (see Chapter "5.2 Filtering measured values")
- 9. Configure the outputs (see Chapter 3 "Configuring the switching outputs" and "4 Configuring the analog output")

Notes

- Please use the foam commissioning instructions for applications with foam.
- The sensor automatically quits expert mode after 5 minutes of inactivity on the display.
- Configuration (*AutCal*) does not take place in the following processes:
 - Changing the probe length
 - Changing the measuring mode
 - Changing the teach-in depth

If you are encountering problems, see Chapter 7 "Troubleshooting".

2.3 Foam commissioning (with factory settings)

For use in applications with a significant buildup of foam.

Performing foam calibration

- 1. Mount the sensor according to the installation conditions (see Chapter 1.4 "Installation conditions" and 1.7 "Mounting the coaxial tube")
- 2. Log into expert mode (see Chapter 5.1 "Expert mode")
- 3. Empty the tank completely
 - The probe rod must be completely free from medium and foam.
 - Buildup must be removed from the probe.
 - The end of the probe must not be fixed to the bottom of the tank.
- 4. Select the measuring mode
 - Access the EXPRT-CONFIG-MeasMd menu using the arrow and Set pushbuttons, and configure to HiAcc.
- 5. Perform empty calibration

Access the EXPRT-FOAM-CalEmp menu using the arrow and Set pushbuttons.

- !CalOk: proceed to step 6.
- !faild: Ensure that the tank is empty and repeat step 5.
- 6. Fill with medium (without foam) until the probe is covered by at least 200 mm. The maximum level must remain 200 mm from the process connection, however.
- 7. Adjust the sensitivity

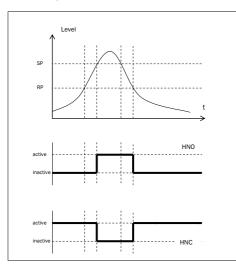
Exit the *EXPRT* menu with the ESC pushbutton. The NGR must now display a valid measured value. If the measured value is invalid, adjust the *TrsHId* value in the *EXPRT-CONFIG* menu.

Access the EXPRT-CONFIG-TrsHld menu using the arrow and Set pushbuttons.

The following information applies:

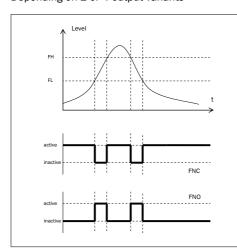
- 50% = high sensitivity
- 0 100% = standard
- 0 200% = low sensitivity
- Value range 20 to 500%
- 8. Run EXPRT-Foam-CalMed
 - !CalOk: Everything in working order, proceed to step 9
 - !faild: Carry out step 5 again
- 9. Check the foam calibration in EXPRT-Foam-FomSta
 - active: Foam commissioning was completed successfully.
 - o inactive: Commissioning unsuccessful. Please repeat the process.

Notes


- Measurement deviation can be higher
- Signal quality 1 and 2 are not counted
- The sensor automatically quits expert mode after 5 minutes of inactivity on the display.
- Configuration (foam teach) does not take place in the following processes:
 - Changing the probe length
 - Changing the measuring mode
 - Changing the teach-in depth
 - Running AutCal

If you are encountering problems, see Chapter 7 "Troubleshooting".

3 Configuring the switching outputs


3.1 Switching hysteresis and window function

Depending on 2 or 4 output variants

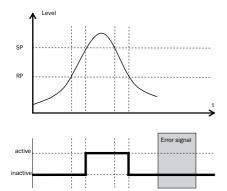
If the level is fluctuating around the set value (e.g., ripple movement during filling), the hysteresis keeps the switching status of the outputs stable. When the level is increasing, the output switches when the respective switching point (SP) is reached; if the level sinks again, the output switches back only after the reset switching point (RP) has been reached.

Depending on 2 or 4 output variants

The window function enables monitoring of a defined range. If the level is between window high (FH) and window low (FL), the output will be active (normally open) or inactive (normally closed).

The error status of the measuring device reflects the cable break monitoring. During an error status, the measuring device switches to the safe state; i.e., the switching outputs become inactive.

As far as the downstream signal evaluation is concerned, this corresponds to a cable break.


3.2 N/O output with configurable hysteresis

Applications

- Dry run protection
- Empty signal

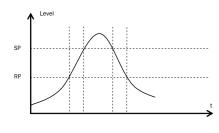
Configuration

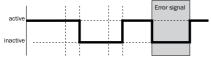
- Configure the Qx switching output as normally open
 - Set the parameter in the QxMENU-OUx menu to Qx_Hno
- Set the switching point
 - Set the value in the *QxMENU-SPx* menu to level in mm (e.g., 500 mm)
- Set the reset point
 - Set the value in the *QxMENU-RPx* menu to level in mm (e.g., 450 mm)
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the QxMENU-TYPx menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Qx-Drv = Switching output in push/pull function

Switching output		PNP	NPN	DRV	Error status
Name ally area (LINO	active	Uv	0 V	Uv (PNP switched)	inastiva
Normally open/HNO	inactive	0 V 1)	Uv ²⁾	0 V (NPN switched)	inactive

¹⁾ Pulldown only

²⁾ Pullup only


3.3 N/C output with configurable hysteresis


Applications

- Overfill protection
- Full signal

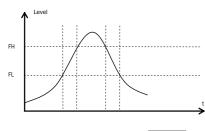
Configuration

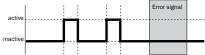
- Configure the Qx switching output as normally closed
 - Set the parameter in the QxMENU-OUx menu to Qx_Hnc
- Set the switching point
 - Set the value in the *QxMENU-SPx* menu to level in mm (e.g., 500 mm)
- Set the reset point
 - Set the value in the *QxMENU-RPx* menu to level in mm (e.g., 450 mm)
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the QxMENU-TYPx menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Qx-Drv = Switching output in push/pull function

Switching output		PNP	NPN	DRV	Error status
Newsells aloned (LING	active	Uv	0 V	Uv (PNP switched)	imaatiya
Normally closed/HNC	inactive	0 V 1)	Uv ²⁾	0 V (NPN switched)	inactive

¹⁾ Pulldown only

²⁾ Pullup only


3.4 N/O output with window function


Application

The critical filling level for the application is within the FHx and FLx window thresholds.

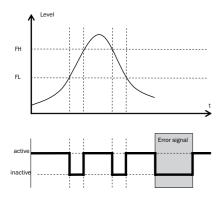
Configuration

- Configure the Qx switching output as normally open
 - Set the parameter in the QxMENU-OUx menu to Qx_Fno
- Set the switching point
 - Set the value in the *QxMENU-FHx* menu to level in mm (e.g., 500 mm)
- Set the reset point
 - Set the value in the OxMENU-FLx menu to level in mm (e.g., 400 mm)
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the QxMENU-TYPx menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Qx-Drv = Switching output in push/pull function

Switching output		PNP	NPN	DRV	Error status
Name - Heart - CENIO	active	Uv	0 V	Uv (PNP switched)	
Normally open/FNO	inactive	0 V 1)	Uv ²⁾	0 V (NPN switched)	inactive

¹⁾ Pulldown only

²⁾ Pullup only


3.5 N/C output with window function

Application

The critical filling level for the application is outside the FHx and FLx window thresholds.

Configuration

- Configure Qx the switching output as normally closed
 - Set the parameter in the QxMENU-OUx menu to Qx_Fnc
- Set the switching point
 - Set the value in the OxMENU-FHx menu to level in mm (e.g., 500 mm)
- Set the reset point
 - Set the value in the *QxMENU-FLx* menu to level in mm (e.g., 400 mm)
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the *QxMENU-TYPx* menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Ox-Drv = Switching output in push/pull function

Switching output		PNP	NPN	DRV	Error status
Newwells, aloned /FNC	active	Uv	0 V	Uv (PNP switched)	inactiva
Normally closed/FNC	inactive	0 V 1)	Uv ²⁾	0 V (NPN switched)	inactive

¹⁾ Pulldown only

²⁾ Pullup only

3.6 N/O output with error signal

Application

If there is an error message at the NGR, this can be transferred using a switching contact.

Configuration

- Configure the Qx switching output as normally open
 - Set the parameter in the QxMENU-OUx menu to Qx_Eno
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the *QxMENU-TYPx* menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Qx-Drv = Switching output in push/pull function

3.7 N/C output with error signal

Application

If there is an error message at the NGR, this can be transferred using a switching contact.

- Configure the Qx switching output as normally closed
 - Set the parameter in the QxMENU-OUx menu to Qx_Enc
- Select the electrical property [NPN/PNP/DRV (push/pull)]
 - Select the parameter in the *QxMENU-TYPx* menu
 - The following information applies:
 - Qx-PNP = Switching output in PNP circuit
 - Qx-NPN = Switching output in NPN circuit
 - Qx-Drv = Switching output in push/pull function

4 Configuring the analog output

4.1 Automatic signal detection

The NGR can automatically detect which signal is required using the connected output load (see Chapter 9 "Technical data").

The following information applies:

- 4 mA to 20 mA < 500 ohms at Uv > 15 V
- 4 mA to 20 mA < 350 ohms at Uv > 12 V
- $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at } \text{Uv} \ge 14 \text{ V}$

Configuration

- Access the QAMENU-TYP menu using the arrow and Set pushbuttons.
- Set the *OAMENU-TYP* menu to *Auto?*
- Note: Automatic signal detection is only active when the device is switched on for the first time. After this the function can be activated in the *OAMENU-TYP* menu with *Auto?* again.

4.2 Current output 4-20 mA

Configuration

- Set upper limit value (20 mA)
 - Set the value in the *QAMENU-QAHIGH* menu to level in mm (e.g., 500 mm)
- Set lower limit value (4 mA)
 - Set the value in the *QAMENU-QALOW* menu to level in mm (e.g., 10 mm)
- Invert signal
 - The analog signal can be inverted in the QAPOL menu
 - Set the parameter in the QxMENU-QAPOL menu to QA-INV
 - QA-NRM = Analog output signal as configured
 - QA-INV = Analog output signal is inverted; QAHIGH 4 mA and QALOW 20 mA
- Select electrical signal
 - Set the parameter in the QxMENU-QATYP menu to 4-20 mA

4.3 Voltage output 0-10 V

- Set upper limit value (10 V)
 - Set the value in the *QAMENU-QAHIGH* menu to level in mm (e.g., 500 mm)
- Set lower limit value (0 V)
 - Set the value in the QAMENU-QALOW menu to level in mm (e.g., 10 mm)
- Invert signal
 - The analog signal can be inverted in the QAPOL menu
 - Set the parameter in the QxMENU-QAPOL menu to QA-INV
 - QA-NRM = Analog output signal as configured
 - $^{\circ}$ QA-INV = Analog output signal is inverted; QAHIGH 0 V and QALOW 10 V
- Select electrical signal
 - Set the parameter in the QxMENU-QATYP menu to 0–10 V

5 Advanced functions

5.1 Expert mode

Expert mode must first be set to activate special functions.

Logging into expert mode

- Access the PASSW menu using the arrow pushbuttons
- Enter password 000537 (NGR on mobile device keypad / L=5 / F=3 / P=7). If an incorrect password is entered or the device is switched off, expert mode is locked again.

5.2 Filtering measured values

Activating filtering

- Smoothing of the measured value; e.g., in the case of ripples on level surfaces For fast level changes, the average of the measured values over X seconds is indicated.
- Set the parameter in the *Filter* menu
- The possible values are Off, 400 ms, 600 ms, 1,000 ms, 1,400 ms, 2 s, 5 s, 10 s

Maximum change of level (plausibility check)

- For applications that cause the level to jump on the NGR due to strong interference. Entry for themaximum level dynamic in the application or the maximum permissible change rate of the level.
- Log into expert mode (see Chapter 5.1 "Expert mode")
- Reduce the parameter in the *EXPRT-CONFIG-MaxCol* menu
- AnySpd (50 cm/s) (default), 10 cm/s, 5 cm/s, 2 cm/s
- Note:
 - For MeasMd = HiSpd, any max. change rate is possible
 - For MeasMd = HiAcc, max, is 10 cm/s

5.3 Testing the configuration

Testing outputs

Switching/analog outputs can be simulated. This allows for the wiring and signal values on the connected systems, such as the PLC control, relay, or lamps, to be checked.

- Activate the Ox switching output
 - o Set the parameter in the QxMENU-SimQx menu to QxOn
 - Further options
 - OxOff = switching output off
 - QxNorm = switching output in measuring operation
 - OxOn = switching output is active
- Note: The simulation is automatically deactivated if the supply voltage is interrupted.

5 Advanced functions

- Activate the QA analog output
 - Set the parameter in the QAMENU-SimCur or SimVol menu to the desired signal value.
 - SimCur for current output
 - SimVol for voltage output
- Note: The simulation is automatically deactivated if the supply voltage is interrupted.

Simulating the level

■ Even if there is no liquid in the container yet, it is possible to select a filling level in the menu in order to test the sensor configuration. When simulating a level value, all outputs on the NGR are set according to the defined configuration. The function should not be selected until a configuration is complete.

Configuration

- Set parameter to the desired filling level as a % in the SimLev menu
- Note:
 - The level simulation refers to the probe length or container level (probe length + offset) if an offset is configured (see Chapter 5.10 "Setting the offset")
 - The simulation is only active when there are no error messages. The simulation is automatically deactivated if the supply voltage is interrupted.
- Parameter selection
 - SimOff: Off
 - Fill level 0%
 - Fill level 25%
 - Fill level 50%
 - Fill level 75%
 - o Fill level 100%

5.4 Configuring the probe length

- Log into expert mode (see Chapter 5.1 "Expert mode")
- Access the EXPRT-CONFIG-Length menu using the arrow and Set pushbuttons.
- Enter the probe length in the Length menu. Please note the defined probe length in Chapter 9.8 "Dimensional drawings"
- Note:
 - HiSpd: max. length = 2,005 mm, response time < 400 ms
 - HiAcc: max. length = 6,005 mm, response time < 2,800 ms

5.5 Teaching in static interference signals

- Static interference signals in the tank generated by tubes, beams, couplings, or a cleaning ball can be taught-in. The probe length provides the value for the teach-in depth.
- Log into expert mode (see Chapter 5.1 "Expert mode")
- Access the EXPRT-Config-CalRng menu using the arrow and Set pushbuttons.
- Set the value range between 95 and 6,005 mm

5 Advanced functions

- Note:
 - The value starts from the NGR process connection
 - The value should cover all interference signals
 - Maximum value = probe length 100 mm
 - AutCal function must be run after this (see Chapter 2 "Commissioning the NGR")
 - The CalRng parameter should always correspond to the probe length for NGRs with remote amplifier

5.6 Evaluating signal quality

Parameters describe the quality of the measuring signal.

■ Log into expert mode (see Chapter 5.1 "Expert mode")

SigQa1

- Characteristic for the robustness of the EXPRT-Config-TrsHId setting
- Not active in foam mode. The displayed value is only valid if the sensor displays the correct level value.
 - Value range: 0 to 100%
 - o Good signal: > 40% (a high pulse reserve is provided with the current *TrsHld* setting.)
- Measures: Reduce EXPRT-Config-TrsHld to increase SigQa1.
- Note:
 - Changing TrsHld will have an impact on SigQa2 and SigQa3.
 - If a satisfactory SigQa1 value cannot be achieved by adjusting TrsHId in conjunction with the SigQa values, the installation condition must be checked. Using a coaxial tube improves signal detection, particularly in media with low DK values (e.g., oil).

SigQa2

- Characteristic for the robustness of echo pulse detection in relation to interference pulses
- Not active in foam mode. The displayed value is only valid if the sensor displays the correct level value.
 - Value range: 0 to 100%
 - Good signal: > 50%
- Measures: Run AutCal; check installation conditions; remove deposits from probe and process connection

SigOa3

- Characteristic for signal noise and electromagnetic interference
 - Value range: 0 to 100%
 - Good signal: > 75%
 - Poor signal: < 50%
- Not active in foam mode. The displayed value is only valid if the sensor displays the correct level value.
 - Value range: 0 to 100%
- Measures:
 - Increase EXPRT-Config-TrsHId
 - EXPRT-Config-MeasMd = HiAcc
 - Improve filtering
 - Switch on filter
 - Reduce EXPRT-Config-MaxCol

5.7 Changing the coaxial cable length (in preparation)

- Valid for versions with remote amplifier.
- This setting makes it possible to configure the coaxial cable length between the sensor head and process connection.

Configuration

- Predefined coaxial cable length (1,000 mm, 2,000 mm, or 3,300 mm)
- Log into expert mode (see Chapter "5.1 Expert mode")
- Configure the coaxial cable length in the EXPRT-Config-CblLen menu (1,000 to 3,300 mm)

Note:

Only the following configurations are permitted:

	Max. probe length [mm]			
Coaxial cable length [mm]	Foam mode inactive	Foam mode active		
1,000	4,000	2,000		
2,000	3,000	1,500		
3,300	1,000	500		

5.8 Activating the display lock

- To prevent the sensor from being tampered with, password protection can be activated for the display.
- When the protection is active, the expert password (000537) must be entered before the menu can be accessed.
- The menu is only unlocked once the correct password is entered.

Configuration

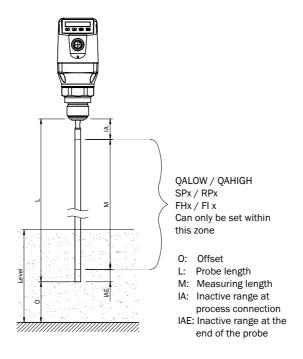
- Log into expert mode (see Chapter "5.1 Expert mode")
- The protection can be (de)activated via the EXPRT-Config-Lock menu.

Note:

- The user is logged out again after 5 minutes of inactivity.
- When the display is locked, only the configured measured value display (DspVal) can be seen

5.9 Selecting the display unit (millimeter/inch)

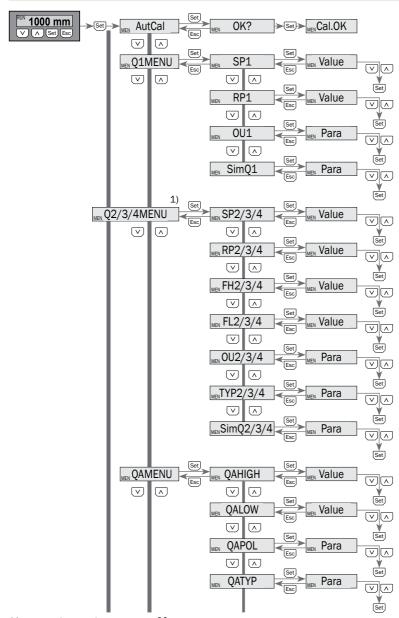
This setting makes it possible to display and configure all length measurements in either millimeters or inches.


- Log into expert mode (see Chapter "5.1 Expert mode")
- Set the unit in the EXPRT-Config-Unit menu (mm/inch)

5.10 Setting the offset

■ This setting makes it possible to indicate the level value on the display in relation to the tank bottom instead of the end of the probe. The actual container level is then indicated on the display.

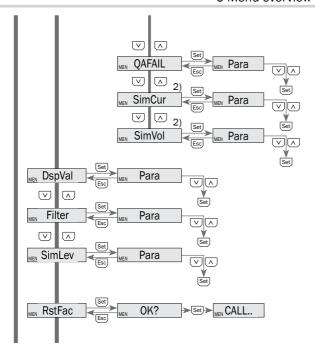
Configuration


- Log into expert mode (see Chapter "5.1 Expert mode")
- Set the offset in the EXPRT-Config-Offset menu (0 to 3,000 mm)
- See the following diagram

Note:

If the offset parameter is changed, the SPx/RPx/FLx/FHx/QALOW/QAHIGH parameters are automatically adjusted.

6 Menu overview

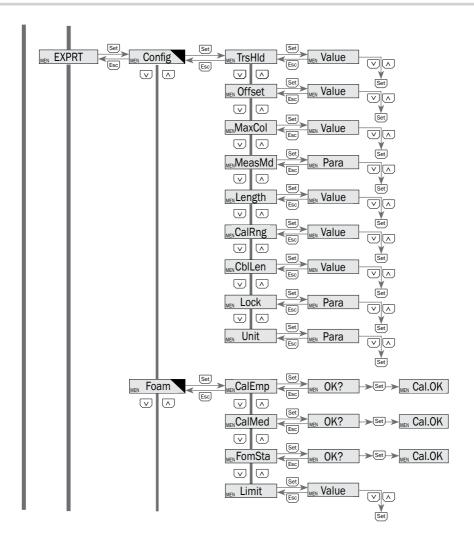

Menu overview continues on page 30.

Note: Q3 and Q4 are only available for an NGR with four switching outputs.

1) Elements hich are displayed depend on the O parameer selection.

6 Menu overview

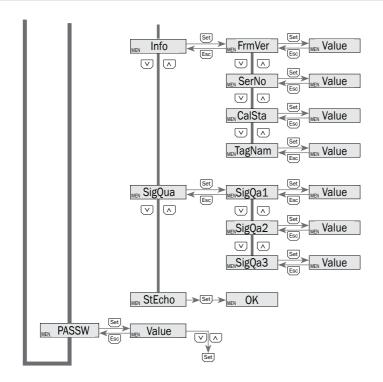
Parameter	Description
AutCal	See Chapter 2 "Commissioning the NGR"
Q1MENU, Q2MENU, Q3MENU, Q4MENU	See Chapter 3 "Configuring the switching outputs"
SPx	Switching point, switching output 1 or 2 or 3 or 4 (SPx > RPx) Note: Not displayed if the switching output in the OUx menu is set to error or window.
RPx	Reset switching point, switching output 1 or 2 or 3 or 4 Note: Not displayed if the switching output in the OU2/3/4 menu is set to error or window.
FHx FLx	 Upper threshold (high) window function, switching output 2/3/4 (FHx > FLx) Lower threshold (low) window function, switching output 2/3/4 Note: Not displayed if the switching output in the OU2/3/4 menu is set to error or hysteresis.
OUx	Switching function, switching output Qx-Hno = Hysteresis function, normally open Qx-Hnc = Hysteresis function, normally closed Qx-Fno = Window function, normally open (function only available for Q2/3/4) Qx-Fnc = Window function, normally closed (function only available for Q2/3/4) Qx-Eno = Error signal, normally open (function only available for Q2/3/4) Qx-Enc = Error signal, normally closed (function only available for Q2/3/4) If Qx is used as an error signal, SPx/FHx and RPx/FLx are hidden in the menu.
SimQx	See Chapter 5.3 "Testing the configuration"
TYP2/3/4	 Qx-PNP = Switching output in PNP circuit Qx-NPN = Switching output in NPN circuit Qx-Drv = Switching output executed in push/pull function
QAMENU	See Chapter 4 "Configuring the analog output"
QAHIGH	Input of the fill level in mm for 20 mA/10 V signal (QAHIGH > QALOW)
QALOW	Input of the fill level in mm for 4 mA/0 V signal
QAPOL	The analog output signal can be inverted QA-Nrm = Analog output signal as configured QA-INV = Analog output signal is inverted: QAHIGH 4 mA/0 V and QALOW 20 mA/10 V
QATYP	Setting of the output signal 4-20 mA 0-10 V Auto V = Qa operated with voltage output of 0 to 10 V Auto A = Qa operated with current output of 4 to 20 mA Auto? = Automatic signal detection based on the existing load During a menu query, either 4-20 mA or 0-10 V is displayed.



Menu overview continues on page 32.

2) Elements which are displayed depend on the QATYP parameter selection.

6 Menu overview


Parameter	Description
QAFAIL	Output behavior as per NE43 in the event of a fault (function only available when current output has been selected under QATYP). • 3.5 mA = Analog current output is set to 3.5 mA in the event of a fault • 21.5 mA = Analog current output is set to 21.5 mA in the event of a fault
SimCur	See Chapter 5.3 "Testing the configuration"
SimVol	See Chapter 5.3 "Testing the configuration"
DspVal	Display settings Distan = The display shows the distance in mm in relation to the end of the probe. QaPerc = The display shows the fill level in % in relation to the QA analog output with the corresponding QAHIGH and QALOW thresholds. QaBarG = The display shows a bar graph in relation to the QA analog output with the corresponding QAHIGH and QALOW thresholds. QaSign = The display shows the current QA output value in mA or V. QxSign = The display shows the output states.
Filter	See Chapter 5.2 "Filtering measured values"
SimLev	See Chapter 5.3 "Testing the configuration"
RstFac	Resetting of the set parameters back to the factory settings

Menu overview continues on page 34.

Password-protected measuring range.

Parameter	Description
EXPRT	See Chapter 5.1 "Expert mode"
TrsHid	This value describes a factor which determines how strong an echo has to be in order to be recognized by the device. The value range lies between 20% and 500%. The default is 100% in this case. Only shown if password entered. • 20% = high sensitivity • 100% = standard • 500% = low sensitivity
Offset	See Chapter "5.10 Setting the offset"
MaxCol	See Chapter "5.2 Filtering measured values"
MeasMd	Measuring mode HiSpd: max. length = 2,005 mm, response time < 400 ms HiAcc: max. length = 6,005 mm, response time < 2,800 ms (more stable measured values, recommended for liquids with low DK values ar d where the TrsHld is < 70) mode-1: not supported, deactivates current AutCal/foam calibration
Length	See Chapter 2.3 "Foam commissioning (with factory settings)"
CalRng	Calibration area/Calibration length (calibration range) Value range: 95 to 6,005 mm Factory setting: 500 mm Range starting from the process connection in which static interference signals (coupling sections, welds, spray balls, etc.) are hidden during the AutCal process. During the AutCal process, there must not be any medium in the defined area of +200 mm.
CblLen	See Chapter "5.7 Changing the coaxial cable length"
Lock	See Chapter "5.8 Activating the display lock"
Unit	See Chapter "5.9 Selecting the display unit (millimeter/inch)"
Foam	See Chapter 2.3 "Foam commissioning (with factory settings)"
CalEmp	See Chapter 2.3 "Foam commissioning (with factory settings)"
CalMed	See Chapter 2.3 "Foam commissioning (with factory settings)"
FomSta	Status of the foam calibration, read-only access inactv: CalEmp and/or CalMed not successful or not performed. Foam treatment inactive. active: Foam treatment active
Limit	Limit between foam and fluid Range: 20 to 100% Factory setting: 90% Medium surface: 90% Foam surface: < 90% When measuring the foam surface, it may be necessary to reduce the limit. If the sensor displays a limit value that is too low, it is necessary to reduce the limit.

6 Menu overview

Parameter	Description			
Info	Sensor information			
FrmVer	Shows the firmware version			
SerNo	Shows the serial number			
CalSta	Displays the status of the container calibration Initia = Container calibration not carried out Calibr = Container calibration activated			
	Only shown if password entered.			
TagNam	Measuring point name, can only be described via IO-Link			
SigQua	Parameter describes the quality of the measuring signal.			
SigQa1	See Chapter "5.6 Evaluating signal quality"			
SigQa2	See Chapter "5.6 Evaluating signal quality"			
SigQa3	See Chapter "5.6 Evaluating signal quality"			
StEcho	This function makes it possible to save diagnostic data in the device.			
PASSW	See Chapter "5.1 Expert mode"			

7.1 Error message on the display

Error	Cause	Solution
!InvEc &	AutCal not executed, interference superimposes medium reflection	Perform commissioning (see Chapter 2.1 "Quick commissioning")
level present	TrsHld setting is not suitable for the medium	Perform advanced commissioning (see Chapter 2.2 "Advanced commissioning")
!InvEc &	Probe length configured incorrectly	Check probe length and compare against configuration in EXPRT-Config-LENGTH
empty tank	Probe not available	Check probe
!ATTNT	A parameter was written outside of the valid value range and therefore adjusted	Write the value again inside of the valid range
	Another parameter was automatically adjusted due to a dependency (SPx, RPx)	Check parameter again
!WRONG	Incorrect password entered	Enter correct password
!NoCal	Information: The AutCal process or foam calibration was rejected because the probe length, teach-in depth, or measuring mode was changed	Perform commissioning again if necessary
!CalOk	The teach-in process was successful	
!NoSig	AutCal failed	Repeat commissioning
!faild	Foam-CalEmp or FoamCalMed menu item failed	Follow the foam commissioning instructions
!SC-Q1 !SC-Q2 !SC-Q3	Short-circuit at the output	Remove short-circuit
!SC-Q4 !SC-Qa	Load resistance at the output is too low	Increase load resistance
!IOLOf	Supply voltage too low for IO-Link communication	Increase supply voltage to achieve the desired functionality
!QaOff	Supply voltage too low for analog output	Increase supply voltage to achieve the desired functionality
!QxOff	Supply voltage too low for switching outputs	Increase supply voltage to achieve the desired functionality
!QaOvf	The ohmic load at the analog current output Qa is too high	Reduce the load at Qa
	The analog current output Qa is not wired	Connect the load to Qa

Error	Cause	Solution
!Range	The maximum allowable measuring range was exceeded. Measurement in this configuration is not possible.	Reduce probe length and/or coaxial cable length (see Chapter "5.7 Changing the coaxial cable length")
!Cable	The coaxial cable is damaged/faulty	Replace the coaxial cable
	The coaxial cable length was configured incorrectly	See Chapter 5.7 "Changing the coaxial cable length"
Display only shows RUN. Otherwise the display is empty.	DspVal menu parameter is set to QaBarG and the level is below QALOW	Change QALOW or DspVal
Display off	Temperature too high	Reduce the temperature
	Temperature is too low	Increase the temperature
	No supply voltage	Connect sensor correctly
!Err[xx] !ErM[xx] !Erl[xx] !ErO[xx]	System error	The device is faulty and must be replaced. Replace the sensor.
NVFail	Memory error	The device is faulty and must be replaced. Replace the sensor.

7.2 Operating the display

Error	Cause	Solution
The menu item SPx/RPx is not displayed	QxMENU/OUx is not configured to Qx-Hno or Qx-Hnc	Perform configuration of Qx (see Chapter 3 "Configuring the switching outputs")
The menu item FHx/FLx is not displayed	QxMENU/OUx is not configured to Qx-Fno or Qx-Fnc	Perform configuration of Qx (see Chapter 3 "Configuring the switching outputs")
QAFAIL is not displayed	The analog output Qa is in voltage mode (QATYP = 0 to 10 V)	Perform configuration of Qa (see Chapter 4 "Configuring the analog output")
SimVol is not displayed	The analog output Qa is in current mode (QATYP = 4 to 20 mA)	Perform configuration of Qa (see Chapter 4 "Configuring the analog output")
SimCur is not displayed	The analog output Qa is in voltage mode (QATYP = 0 to 10 V)	Perform configuration of Qa (see Chapter 4 "Configuring the analog output")
EXPRT-Config is not displayed	Correct password not entered	See Chapter 5.1 "Expert mode"

Error	Cause	Solution
EXPRT-Foam is not displayed	Correct password not entered	See Chapter 5.1 "Expert mode"
Lengths are ex- pressed as deci- mal numbers	Inch is activated as the display unit	Perform configuration of unit [see Chapter 5.9 "Selecting the display unit (millimeter/inch)"]
The menu only shows PASSW	Display lock is activated	See Chapter 5.8 "Activating the display lock"

7.3 Outputs

Error	Cause	Solution
Switching output does not behave as expected	Configuration incorrect	Perform configuration of the switching output (see Chapter 3 "Configuring the switching outputs")
	An error is pending; the sensor outputs are in a safe state	Remove the cause of the error
	Cable break	Check the cable
Analog output does not behave as expected	Configuration incorrect	Configure the analog output (see Chapter 4 "Configuring the analog output")
	An error is pending; the sensor outputs are in a safe state	Remove the cause of the error
	Cable break	Check the cable

7.4 Behavior

Error	Cause	Solution
Sensor shows high level after installation even though the tank is empty	AutCal not performed	Perform commissioning (see Chapter 2 "Commissioning the NGR")
When used with a coaxial tube, the sensor indicates a high level although the tank is empty	AutCal not performed	Perform commissioning (see Chapter 2 "Commissioning the NGR")
Level value fluctuates on the display	Medium surface unsettled	Activate filtering (see Chapter 2.1 "Quick commissioning")

Error	Cause	Solution
The displayed level value / SPx/ RPx / FHx/FLx / QALOW/QAHIGH is greater than the probe length	An offset was configured for the level value	Adjust offset (See Chapter 5.10 "Setting the offset")
	Incorrect probe length configured	Adjust probe length (see Chapter 5.4 "Configuring the probe length")
Level occasionally jumps to a higher value	Contamination in the vicinity of the process connection	Clean
	Spray ball or feed dampen probe with medium above the medium surface	Observe the installation conditions Configure the MaxCoL plausibility filter (see chapter "5.2 Filtering measured values")
	Change in the ambient conditions regarding the situation during the AutCal process	Perform commissioning again (see Chapter 2 "Commissioning the NGR")
	Significant buildup of foam	Perform foam commissioning (see Chapter 2.3 "Foam commissioning")
	TrsHld set too low, the echo algorithm detects interference reflections	Increase TrsHId
Level occasionally jumps to 0 mm	TrsHld set too high	Perform advanced commissioning (see Chapter 2 "Commissioning the NGR")
	Significant buildup of foam	Perform foam commissioning
No measurement of low levels for media with low DKs	Increased inactive range at the probe end for media with a low DK	
Increased measurement inaccuracy	Use of foam algorithm	

8 Technical Data

8.1 Features

Medium	Liquids
Detection type	Limit, continuous
Probe length Mono-rod probe Cable prob	200 mm to 2,000 mm * 1,000 mm, 2,000 mm, 3,000 mm, 4,000 mm
Adjustable measuring range	95 mm to 6,005 mm
Process pressure	-1 bar to 10 bar
Process temperature	-20°C to +100°C
GOST certificate	V
RoHS certificate	V
IO-Link	V
UL certificate	✓

8.2 Performance

Accuracy 1)	±5 mm
Repeatability 1)	≤ 2 mm
Resolution	< 2 mm
Response time 3)	< 400 ms

^{*} in preparation

8 Technical data

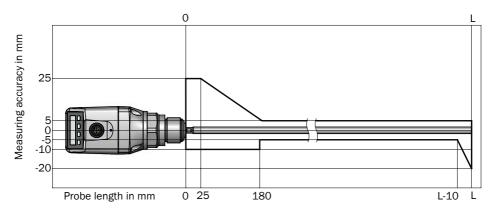
Dielectric constant	≥ 5 for mono-rod probe/cable probe* ≥ 1.8 with coaxial tube
Conductivity	No limitation
Maximum change of level 4)	500 mm/s
Inactive area at process connection 2)	25 mm
Inactive area at end of probe 1)	10 mm

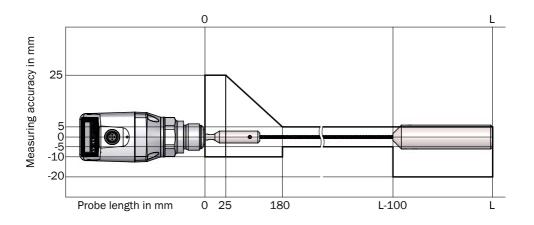
¹⁾ With water under reference conditions.

8.3 Reference conditions

Container with diameter	1 m
Minimum distance to built-in components	> 300 mm
Distance from end of probe to tank bottom	> 15 mm
Air humidity	65% ± 20%
Temperature	+20°C ± 5°C
Pressure	1,013 mbar abs. ± 20 mbar
Medium	Water, DK = 80
Centered installation of sensor	✓
Container parameterization carried out	✓

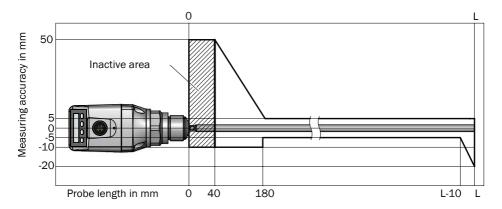
^{*} in preparation

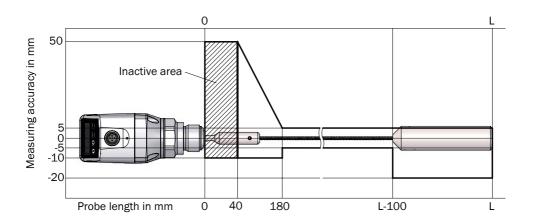

 $^{^{2)}}$ With parameterized container with water under reference conditions, otherwise 40 mm.


³⁾ Depends on measuring mode (high-speed < 400 ms, high accuracy < 2,800 ms)

⁴⁾ Depends on configuration (MaxCol - maximum change of level)

8.4 Measurement accuracy


Measurement accuracy with parameterized container



(in preparation)

Measurement accuracy without parameterized container

(in preparation)

8.5 Mechanics/materials

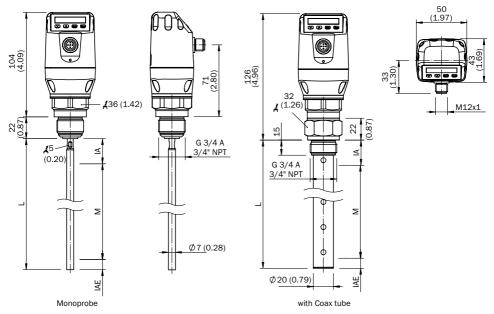
Wetted parts	1.4404, PTFE
Process connection	G 3/4 A, 3/4" NPT
Housing material	Plastic PBT
Max. probe load	≤ 6 Nm
Enclosure rating	IP67: EN 60529
Weight	Max. 1.3 kg
Coaxial cable insulation	PVC

8.6 Electrical connection values

Current consumption ≤ 100 mA at 24 V without output load Initialization time ≤ 5 s Protection class III Connection type M12 x 1 (8-pin) M12 x 1 (8-pin) M12 x 1 (8-pin) Hysteresis Min. 3 mm, freely configurable Output signal 10 4 mA to 20 mA / 0 V to 10 V automatically switchable depending on output load 10 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor output (Q2) switchable (depending on type) 10 Signal voltage HIGH Uv -2 V Signal voltage LOW ≤ 2 V Output current < 100 mA Inductive load < 1 H Capacitive load 100 nF Temperature drift < 0.1 mm/K Output load 4 mA to 20 mA < 500 ohms at Uv > 15 V 4 4 mA to 20 mA < 350 ohms at Uv > 12 V 0 V to 10 V > 750 ohms at Uv > 14 V Lower signal level 3.8 mA to 4 mA Upper signal level 20 mA to 20.5 mA	Supply voltage 1)2)	12 V DC to 30 V DC
Protection class III Connection type $M12 \times 1 (5\text{-pin})$ $M12 \times 1 (8\text{-pin})$ Hysteresis $Min. 3 \text{ mm, freely configurable}$ Output signal 10 $4 \text{ mA to } 20 \text{ mA } / 0 \text{ V to } 10 \text{ V automatically switchable depending on output load } ^{10}$ $1 \text{ PNP transistor output } (Q1) \text{ and } 1 \text{ PNP/NPN transistor output } (Q2) \text{ switchable, or } ^{10}$ $1 \text{ PNP transistor output } (Q1) \text{ and } 3 \text{ PNP/NPN transistor outputs } (Q2 \text{ to } Q4) \text{ switchable } (\text{depending on type}) } ^{10}$ Signal voltage HIGH $Uv - 2V$ Signal voltage LOW $\leq 2V$ Output current $\leq 100 \text{ mA}$ Inductive load $\leq 1 \text{ H}$ Capacitive load $\leq 1 \text{ H}$ Capacitive load $\leq 100 \text{ nF}$ Temperature drift $\leq 0.1 \text{ mm/K}$ Output load $\leq 0.1 \text{ mm/K}$	Current consumption	≤ 100 mA at 24 V without output load
Connection type M12 x 1 (5-pin) M12 x 1 (8-pin) Hysteresis Min. 3 mm, freely configurable Output signal ¹) 4 mA to 20 mA / 0 V to 10 V automatically switchable depending on output load ¹) 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor output (Q1) and 3 PNP/NPN transistor outputs (Q2 to Q4) switchable (depending on type) ¹) Signal voltage HIGH Uv −2 V Signal voltage LOW ≤ 2 V Output current < 100 mA Inductive load 100 nF Temperature drift < 0.1 mm/K Output load 4 mA to 20 mA < 500 ohms at Uv > 15 V 4 mA to 20 mA < 350 ohms at Uv > 12 V 0 V to 10 V > 750 ohms at Uv ≥ 14 V Lower signal level 3.8 mA to 4 mA	Initialization time	≤5s
Hysteresis Min. 3 mm, freely configurable Output signal ¹) 4 mA to 20 mA / 0 V to 10 V automatically switchable depending on output load ¹¹ 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor outputs (Q2 to Q4) switchable (depending on type) ¹¹ Signal voltage HIGH Uv -2 V Signal voltage LOW ≤ 2 V Output current Inductive load 100 nF Temperature drift < 0.1 mm/K Output load 4 mA to 20 mA < 500 ohms at Uv > 15 V 4 mA to 20 mA < 350 ohms at Uv > 12 V 0 V to 10 V > 750 ohms at Uv ≥ 14 V Lower signal level 3.8 mA to 4 mA	Protection class	III
Output signal 13 4 mA to 20 mA / 0 V to 10 V automatically switchable depending on output load 13 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor outputs (Q2 to Q4) switchable (depending on type) 13 Signal voltage HIGHUv -2 VSignal voltage LOW $\leq 2 \text{ V}$ Output current $< 100 \text{ mA}$ Inductive load $< 1 \text{ H}$ Capacitive load 100 nF Temperature drift $< 0.1 \text{ mm/K}$ Output load $4 \text{ mA to } 20 \text{ mA} < 500 \text{ ohms at Uv} > 15 \text{ V}$ $4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V}$ $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V}$ Lower signal level $3.8 \text{ mA to } 4 \text{ mA}$	Connection type	· · ·
depending on output load $^{1)}$ 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor output (Q1) and 3 PNP/NPN transistor outputs (Q2 to Q4) switchable (depending on type) $^{1)}$ Signal voltage HIGH Uv -2 V Signal voltage LOW $\leq 2 \text{ V}$ Output current $< 100 \text{ mA}$ Inductive load $< 1 \text{ H}$ Capacitive load 100 nF Temperature drift $< 0.1 \text{ mm/K}$ Output load $4 \text{ mA to } 20 \text{ mA} < 500 \text{ ohms at Uv} > 15 \text{ V}$ $4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V}$ $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V}$ Lower signal level 3.8 mA to 4 mA	Hysteresis	Min. 3 mm, freely configurable
Signal voltage LOW ≤ 2 V Output current < 100 mA Inductive load < 1 H Capacitive load 100 nF Temperature drift < 0.1 mm/K Output load 4 mA to 20 mA < 500 ohms at Uv > 15 V 4 mA to 20 mA < 350 ohms at Uv > 12 V 0 V to 10 V > 750 ohms at Uv ≥ 14 V Lower signal level 3.8 mA to 4 mA	Output signal ¹⁾	depending on output load ¹⁾ 1 PNP transistor output (Q1) and 1 PNP/NPN transistor output (Q2) switchable, or 1 PNP transistor output (Q1) and 3 PNP/NPN transistor
Output current $< 100 \text{ mA}$ Inductive load $< 1 \text{ H}$ Capacitive load 100 nF Temperature drift $< 0.1 \text{ mm/K}$ Output load $4 \text{ mA to } 20 \text{ mA} < 500 \text{ ohms at Uv} > 15 \text{ V}$ $4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V}$ $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V}$ Lower signal level $3.8 \text{ mA to } 4 \text{ mA}$	Signal voltage HIGH	Uv -2 V
Inductive load $< 1 H$ Capacitive load $100 nF$ Temperature drift $< 0.1 mm/K$ Output load $4 mA \text{ to } 20 mA < 500 \text{ ohms at Uv} > 15 V$ $4 mA \text{ to } 20 mA < 350 \text{ ohms at Uv} > 12 V$ $0 V \text{ to } 10 V > 750 \text{ ohms at Uv} \ge 14 V$ Lower signal level $3.8 mA \text{ to } 4 mA$	Signal voltage LOW	≤ 2 V
Capacitive load 100 nF Temperature drift $< 0.1 \text{ mm/K}$ Output load $4 \text{ mA to } 20 \text{ mA} < 500 \text{ ohms at Uv} > 15 \text{ V}$ $4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V}$ $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V}$ Lower signal level $3.8 \text{ mA to } 4 \text{ mA}$	Output current	< 100 mA
Temperature drift $ < 0.1 \text{ mm/K} $ Output load $ 4 \text{ mA to } 20 \text{ mA} < 500 \text{ ohms at Uv} > 15 \text{ V} $ $ 4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V} $ $ 0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V} $ Lower signal level $ 3.8 \text{ mA to } 4 \text{ mA} $	Inductive load	<1H
Output load 4 mA to 20 mA < 500 ohms at Uv > 15 V 4 mA to 20 mA < 350 ohms at Uv > 12 V 0 V to 10 V > 750 ohms at Uv \ge 14 V Lower signal level 3.8 mA to 4 mA	Capacitive load	100 nF
$4 \text{ mA to } 20 \text{ mA} < 350 \text{ ohms at Uv} > 12 \text{ V}$ $0 \text{ V to } 10 \text{ V} > 750 \text{ ohms at Uv} \ge 14 \text{ V}$ $\text{Lower signal level}$ $3.8 \text{ mA to } 4 \text{ mA}$	Temperature drift	< 0.1 mm/K
	Output load	4 mA to 20 mA < 350 ohms at Uv > 12 V
Upper signal level 20 mA to 20.5 mA	Lower signal level	3.8 mA to 4 mA
	Upper signal level	20 mA to 20.5 mA
EMC EN 61326-1:2006, 2004/108/EC	EMC	EN 61326-1:2006, 2004/108/EC

¹⁾ All connections are reverse polarity protected. All outputs are overload and short-circuit protected.

 $^{^{2)}}$ Use an energy-limited circuit for power supply as per UL61010-1 3rd Ed., Section 9.3

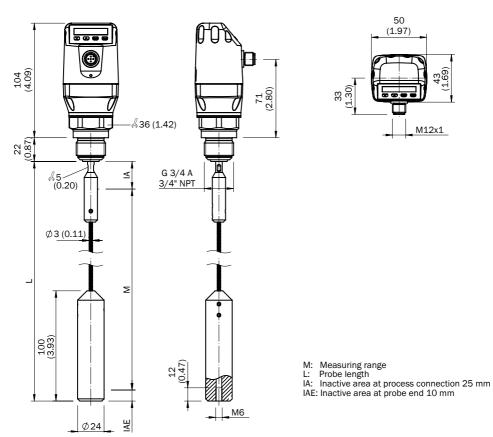

8.7 Environmental conditions

Ambient temperature, operation ¹⁾	-20°C to +60°C
Ambient temperature, storage	-40°C to +80°C

 $^{^{1)}}$ According to UL listing: degree of contamination 3 (UL61010-1: 2012-05); air humidity: 80% at temperatures up to 31 °C; installation height: max. 3,000 m above sea level; indoor applications only

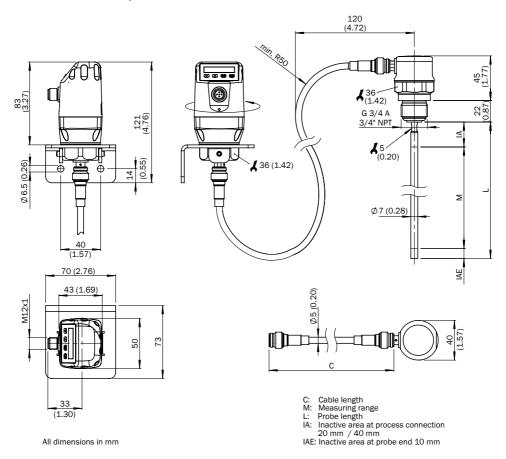
8.8 Dimensional drawings

Dimensions in mm



M: Measuring rangeL: Probe length

IA: Inactive area at process connection 25 mm


IAE: Inactive area at probe end 10 mm

Standard version*

^{*} in preparation

NGR Inox with remote amplifier*

* in preparation

8.9 Factory settings

Parameter	Factory setting
SP1	80% of the probe length measured from the end of the probe
RP1	5 mm below SP1
OU1	Q1_Hno
For 5-pin versions: 20% of the probe length measured from the end of the p	
3F2	For 8-pin versions: 60% of the probe length measured from the end of the probe
RP2	5 mm below SP2
0U2	Q2_Hno
TYP2	Q2_PNP
SP3	40% of probe length measured from end of probe
RP3	5 mm below SP3
0U3	Q3_Hno
SP4	20% of probe length measured from end of probe
RP4	5 mm below SP4
OU4	Q4_Hno
QAHigh	50 mm below start of probe
QALOW	10 mm above end of probe
QAPOL	QA_Nrm
QATYP	Auto
QAFAIL	3.5 mA
SimCur	SimOff
SimVol	SimOff
DspVal	Distan
Filter	Off
SimLev	SimOff
TrsHld	100
MaxCol	Depending on measuring mode: HiSped = AnySped, HiAcc = 10 cm/s
MeasMd	Depending on probe length: < 2,005 mm = HiSped, > 2,005 mm = HiAcc
CalRng	6,005 mm
FomSta	Inactive
Limit	90
Offset	0 mm
Unit	mm
Lock	Inactive

9 Order Details

Ordering code Guided Wave Radar Level Transmitter model NGR

Order Details (Example: NGR-1 2 4 1 G5 B)

Model	Version	Material	Signal Output	Contact	Connection	Option
NGR	1 = probe 2 = coaxial	2 = stainless steel/ PTFE	4 = 4-20 mA/ 0-10 V switchable	$2 = 1 \times PNP + 1 \times PNP/NPN$	G5 = G¾ male N5 = ¾" NPT male	$0 = $ without $B^{1)} = $ mounted on bypass

¹⁾ Bypass-specification, see NBK-M data sheet

Note: Probe length << L>> available in steps of 10 mm. Example: 200, 210, 220, 230... 2000 mm. Please specify in clear text while ordering

Plug connectors and cables

Model	Brief description
ZUB-KAB-12K502	Cable, M12, 5-pin, straight connector female with molded cable, 2 m, PUR/PVC
ZUB-KAB-12K802	Cable, M12, 8-pin, straight connector female with molded cable, 2 m, PUR/PVC

10 Maintenance

The NGR is maintenance-free. We recommend doing the following regularly:

Checking the probe for contamination

Checking the screw connections and plug-in connections

11 Returning the level sensor

Declaration of no objection (contamination declaration in the event of service work)
Rinse off or clean removed devices before returning them in order to protect our employees and the environment from dangers posed by residue from measured materials. Faulty devices can only be examined when accompanied by a completed return form. A declaration of this type includes information about all materials which have come into contact with the device, including those which were used for testing purposes, operation, or cleaning. The return form is available at our Internet site (www.kobold.com).

12 Disposal

Dispose of device components and packaging materials in compliance with applicable country-specific waste treatment and disposal regulations of the region of use.

13 Medium list

This medium list (from page 56) provides an overview of the DK values of liquids. Water-based liquids always have a DK value of > 5, which allows NGR to be used easily. For DK values of < 5, a coaxial tube or a metallic immersion tube/bypass is always required.

Substance	DK value
Acetal (25°C)	3.8
Acetaldehyde	15.0
Acetamide (77°C)	59.2
Acetoacetic acid ethyl ester	15.0
Acetone	21.5
Acetophenone	18.0
Acetylacetone	23.0
Acetyl bromide	16.2
Acetyl chloride	15.9
Acetylene dibromide	7.2
Acetylene tetrabromide	5.6
Aconite acid ester	6.3
Adipic acid	1.8
Aerosile	1.0
Activated carbon	12.0
Alum (60°C)	4.2
Allyl alcohol	20.6
Allyl chloride	8.2
Allyl iodide	6.1
Aluminum bromide (100°C)	3.4
Aluminum foil	10.8
Aluminum hydroxide	2.5
Aluminum splinters	7.3
Aluminum sulfate	2.6

Substance	DK value
Formic acid	57.9
Ammonia	15.0
Ammonia solution (25%)	31.6
Ammonia salt	4.3
Pentanol	14.8
Amyl amine	4.5
Aniline	7.0
Anisealdehyde	22.3
Anisole	4.5
Anthracite	3.2
Antimony hydride	1.8
Malic acid diethylester	10.0
Argon	1.5
Arsine	2.1
Arsole	2.3
Asbestos	10.0
Ascorbic acid (vitamin C)	2.1
Azelaic acid diethylester	5.0
Azoxybenzene (36°C)	5.2
Basalt	2.5
Cotton fiber flour	3.2
Bauxite	2.5
Bentonite	8.1
Benzal chloride	6.9

Substance	DK
	value 17.6
Benzaldehyde	17.0
Benzil (80°C)	10.0
Benzine	2.0
Benzene	2.3
Benzene, heavy	3.2
Benzyl alcohol	13.5
Benzyl amine	4.6
Benzyl chloride	7.0
Beer brew	25.0
Bitumen	2.8
Hydrogen cyanide	158.0
Bore oil emulsion	25.0
Bornylacetate	4.6
Bromine	3.1
Butanoic acid	3.0
Camphene	2.3
Caproic acid (71°C)	2.6
Caprylic acid	2.5
Carbazole	1.3
Carbonylcyanide	10.7
Cellite	1.6
Cetyl alcohol (60°C)	3.6
Quinoline	8.8
Chlorine, liquid	2.1

Substance	DK value
Chloral	6.7
Chlorobenzine	5.7
Chloracetic acid	33.4
Chlorohydrin	31.0
Chlorinated lime	2.3
Chloroform (trichlormethane)	4.8
Cola essence	17.3
Cream (skin)	19.0
Cuminaldehyde	10.7
Cyanogen	2.5
Decalin	2.1
Degalan	3.1
Desmodur	10.0
Diacetone alcohol	18.2
Diamylether	3.0
Dibenzofuran (100°C)	3.0
Dibenzyl (60°C)	2.5
Diesel fuel	2.1
Diethylamine	3.8
Dimethylether (methyl ether)	5.0
Diofan	32.0
Dioxane	2.0
Diphenyl (75°C)	2.5
Printing ink	4.6

Substance	DK value
Ice cream (-20°C)	16.5
Iron (III) oxide red	1.9
Emulphor	4.0
Epichlorhydrin	23.0
Peanuts, dried	3.1
Peanut expeller	2.4
Vinegar	24.0
Acetic acid	6.2
Cement asbestos	3.2
Ethanol (ethyl alcohol)	16.2
Ether	4.0
Ethyl acetate	6.0
Ethylamine	6.9
Ethyl benzoate	6.0
Ethyl benzene	2.4
Ethylene chlorohydrin	25.0
Ethylene chloride	10.6
Ethylenediamine	15.0
Ethylene oxide (-1°C)	13.9
Ethyl mercaptan	6.9
Fenchone	12.8
Ferrite pellets	21.0
Ferrosilicone	10.0
Green vitriol (80°C)	32.4

Substance	DK
Ferrozell	value 18.3
Fat coal	3.4
Fatty acid (35°C)	1.7
Fish oil	2.6
Flax pellets	1.4
Meat and bone meal	1.9
Tankage	1.9
Fly ash	3.3
Fluorine	1.5
Fluorbenzene	6.4
Hydrogen fluoride (0°C)	83.6
Calcium fluoride	2.5
Formamide	109.0
Furan	3.0
Furfurol	41.7
Animal feed grist	2.4
Germanium tetrachloride	2.4
Grain grist	3.0
Gypsum	1.8
Fiber glass powder	1.1
Glass granulate	4.0
Cullet	2.0
Glucose (50°C)	30.0
Glycerol	13.2

Substance	DK value
Glycerol water	37.0
Glycol	37.0
Glysantin	25.0
Granuform	4.0
Guaiacol	11.0
Guano (phosphate rock)	2.5
Oat	4.9
Urea	2.9
Resin	1.5
Hazelnuts	2.0
Hot glue (150°C)	2.3
Heating oil	2.1
Helium	1.1
Heptane	1.9
Heptanal	9.1
Heptanoic acid (71°C)	2.6
Heptene	2.1
Hexane	1.9
Hexene	2.1
Hexanol	12.5
Hibiscus	2.8
Wood chips	2.3
Charcoal	1.3
Wood swarf	1.5

Substance	DK value
Splints	1.1
Honey	24.0
Hydrazine	58.0
Imidazole, pure (100°C)	23.0
Isoamyl acetate	4.8
Isoamyl alcohol	15.6
Isoamyl bromide	6.0
Isoamyl chloride	6.1
Isoamyl ether	2.8
Isoamyl iodide	5.6
Isobutanoic acid	2.6
Isobutyl alcohol	18.1
Isobutyl amine	4.4
Isobutyl benzene	2.3
Isobutyl bromide	7.2
Isobutyl chloride	6.5
Isobutyl cyanide	18.0
Isobutyl iodide	6.5
Isobutyl nitrate	11.7
Isobutyl silane	2.5
Isoquinoline	10.7
Isocyanate	6.1
Isoprene	2.1
Isopropanol	18.0
	·

Substance	DK
Isosafrol	value 3.3
lodine	11.1
lodobenzene	4.6
Methyl iodide	7.1
Hydrogen iodide	2.9
Coffee beans	1.5
Cocoa beans	1.8
Caustic potash	3.3
Potash salt	2.0
Lime	2.0
Potato starch	1.7
Ceramic compound	17.0
Ketchup	24.0
Gravel	2.6
Diatomaceous earth	1.4
Silicic acid	2.0
Bone fat	2.7
Bonemeal	1.7
Sodium chloride	23.0
Coal, 15% moisture	4.0
Diethyl carbonate	2.8
Coal dust	2.5
Coconut oil (refined)	2.9
Coke	3.0

Substance	DK value
Cork powder	1.7
Concentrated feed	3.2
Chalk	2.1
Cresol	11.0
Cresol resin	18.3
Crystal sugar	2.0
Fertilizer	4.3
Plastic pellets	1.2
Copper ore	5.6
Nitrous oxide	1.5
Lanolin	4.2
Latex	24.0
Lauric acid ethyl ester	3.4
Glue	2.0
Linoleic acid	2.7
Solvent	18.0
Skim milk powder	2.3
Corn	3.6
Corn grist	2.1
Corn starch syrup	18.4
Malt	2.7
Mandelic acid nitril	18.0
Marble stones small (2-	2.5
Mice feed	2.3

Substance	DK
Flour	value 2.5
rioui	
Molasses	31.3
Menthol (42°C)	4.0
Mesityl oxide	15.0
Metal powder	6.0
Methanol (methyl alcohol)	33.0
Methyl acetate	8.0
Methylene bromide	7.0
Methylene chloride	9.0
Methylene chloride	9.1
Methylene iodide	5.3
Methyl nitrate	23.5
Methyl cellulose	3.0
Monochloremethane	9.8
Morpholine	7.3
Naphthenic acid	2.6
Naphthalene	2.5
Sodium carbonate	3.0
Sodium methylate	1.5
Sodium perborate	2.2
Sodium peroxide	2.7
Sodium sulfate	2.7
Nitrobenzene	35.0
Nitroethane	29.0

Substance	DK value
Nitroglycol	28.3
Nitroglycerin	19.3
Nitro varnish	5.2
Nitromethane	39.0
Nitrophoska	5.4
Nitrosyl bromide (13°C)	15.2
Nitrosyl chloride	19.0
Pasta, milled durum	1.9
Octane	2.0
Octene	2.1
Octyl bromide	5.0
Oil	2.0
Oileic acid	2.5
Water-in-oil emulsion	24.2
Oxalo ethyl acetate	6.0
Palmitic acid	2.3
Palm tree nuts	2.2
Palm tree nuts	2.8
Palm seed oil	1.8
Paper scraps	1.2
Paraffin	1.6
Paraldehyde	15.1
Pelargon	2.8
Penta borane	21.0

Substance	DK value
Penta ethyl chloride	3.8
Penta chlorotoluene	4.8
Pentane	1.8
Pentanal (15°C)	11.8
Pentene	2.0
Perchlorate	3.6
Hexachlorobutadiene	2.6
Perlite	1.7
PET powder	1.5
Phenetole	4.2
Phenol	8.0
Phenol resin	7.4
Phosgene	4.3
Phosphate	4.0
Phosphorus, liquid	3.9
Phosphorus salt	4.0
Pinane	2.1
Piperidine	5.8
Polyamide pellets	1.7
Polyethylene	1.2
Polypropylene	1.6
Polyrol	2.8
Polyvinyl acetals	2.8
Popcorn	1.1

Substance	DK value
Liquid detergent	1.2
Propanal (15°C)	14.4
Propanol (propyl alcohol)	2.2
Propanoic acid	3.2
Propylamine	3.0
Propylene, liquid	1.9
Propylene chloride	9.0
Propylether	3.3
PVC powder, pure	1.3
Pyridine	13.2
Pyrrol	8.0
Silica sand	2.0
Quartz stone meal	2.7
Mercury diethyl	2.1
Rapeseed	3.3
Rapeseed grist	2.1
Rice	3.0
Rye	6.0
Rye bran	2.2
Beetroot seeds	3.5
Beetroot cuttings	7.3
Carbon black	18.8
Saccharose solution	20.0
Sawdust	1.3

Substance	DK value
Nitric acid (98%)	19.0
Hydrochloric acid	5.0
Salt water	32.0
Oxygen	1.5
Chamotte	1.8
Foam flakes	1.1
Lard (80°C)	2.1
Soft soap	32.0
Chocolate powder	2.0
Black liquor	32.0
Sulfur	3.5
Sulfur dioxide (sulfurous acid)	14.0
Carbon disulfide, pure	2.6
Sulfuric acid	21.9
Sulfuric acid (15%)	31.0
Sulfuric acid (97%)	8.6
Sulfur trioxide	3.1
Hydrogen sulfide	6.0
Heavy fuel oil	2.2
Soap flakes	9.2
Soap pellets	3.5
Mustard	24.0
Mustard seeds	3.6
Silicone oil	2.7

Substance	DK value
Silicone rubber	2.9
Soy flour	4.5
Soy grains	2.9
Sunflower seeds	2.0
Chaff	1.5
Stearic acid	2.3
Rock salt (0-25 mm)	4.3
Styrene	2.4
Tobacco dust	1.8
Talcum	1.5
Tea powder	2.0
Tar, raw	4.0
Terephthalic acid	1.5
White spirit	2.0
Terpinene	2.7
Terpinolene	2.3
Tetrachloroethylene	2.5
Carbon tetrachloride	2.3
Thomaskali dust	3.4
Thujone (0°C)	10.8
Meat and bone meal	2.2
Titan tetrachloride	2.8
Toluene	2.4
Clay	2.3

Substance	DK value
Transformer oil	2.1
Trichloroethylene	3.2
Triethyl aluminum	2.9
Triptan	1.9
Dry yeast	2.0
Ultrasil	1.4
Undecan	2.0
Valeric acid	2.7
Viscose	34.5
Wax	1.8
Benzine	2.0
Water	80.3
Water (360°C)	10.0
Water, demineralized	29.3
Water, heavy	78.3
Sodium silicate	16.0
Hydrogen	1.2
Hydrogen peroxide, pure (0°C)	84.2
Wine	25.0
Tartaric acid	35.9
Wheat	4.0
Wheat starch	2.5
Xylitol	40.0
Xylene	2.3

Substance	DK value
Toothpaste	18.3
Cellulose	1.2
Cement	2.2
Zinc oxide	1.5
Zinc powder	4.4
Sugar	1.8
Tinder	12.0

14 EU Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Level Sensor Model: NGR

to which this declaration relates is in conformity with the standards noted below:

EN 61326-2-3:2013

Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-3: Particular requirements - Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning

EN 50581:2012

Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

Also the following EU guidelines are fulfilled:

2014/30/EU EMC Directive

2011/65/EU RoHS

Hofheim, 11. May 2017

H. Peters General Manager M. Wenzel Proxy Holder

Fra. Ville

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-299-0 Fax: +49(0)6192-23398 E-Mail:

info.de@kobold.com Internet: www.kobold.com

Version: K03/0517