
1 Transport PCE tutorial,  May 2019 

  
Introducing network programmability into 

OTN/WDM networks 

Transport PCE  
a full open source approach based on  

OpenDaylight & Open ROADM 
 

22nd of May 2019 
 

Olivier Renais, Orange Labs 
olivier.renais@orange.com  

Shweta Vachhani, Dhruv Bhardwaj, AT&T 
 

mailto:olivier.renais@orange.com


2 Transport PCE tutorial,  May 2019 

 Introduction 

 Global architecture 

 APIs 

 Main modules description 

 Current status 

 Planned developments 

 

 

AGENDA 



3 Transport PCE tutorial,  May 2019 

 Transport PCE project was created in May 2016 with the aim of providing a Controller for 
Optical infrastructure based on open standards 

 

 

Transport PCE initial Goals 

TransportPCE  initial goals were multiple: 

 Provide the community with: 

 an open implementation of main optical node management functions  

 feedbacks and a proof-of-concept of Open ROADM specifications  

 Standardize with yang models the API between the various components in an optical controller : 

 Northbound API based on Open ROADM service model  

 + East/west APIs based on transportPCE models to help building a modular architecture and ease the 
integration of additional  modules 

 Propose code and tests for a reference implementation that can be reused in third-parties derived 
products 



4 Transport PCE tutorial,  May 2019 

The Open ROADM choice 
 Open ROADM Multi-Service Agreement (MSA) provides comprehensive and coherent Yang models, not 

only for device control, but also for network topology & service management. 

 It also defines specifications for the optical layer.  

 The disaggregation of ROADM & Xponders building blocks, provides a high level of interoperability  

 

 

 

 

 

 

 

 
 

 Interoperability is a key enabler for automation : Open ROADM turn out to be the most natural                            
choice for tpce implementation 

Network Model 



5 Transport PCE tutorial,  May 2019 

Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Routing metrics 
Policy repository Devices 

Topology 

Services 

Device management 
 
 
 
 
 
 

transportPCE 

North API 

DB management 
startup / running) 

Alarm 

Hierarchical controller / Orchestrator 

TransportPCE  architecture 

 

OLM 
 

Alarm & PM 
management 

Inventory 
Management 

PM 

Configuration 
management 

Published API based on  
Open ROADM models 
transportPCE models 

Topology 
management 

NETCONF 

device  
inventory 

WDM layer 

OTN layer 

management network 

https://wiki.opendaylight.org/view/TransportPCE:Main  
https://git.opendaylight.org/gerrit/#/q/project:transportpce 



6 Transport PCE tutorial,  May 2019 

APIs 

Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Routing metrics 
Policy repository 

Topology 

Services 

WDM layer 

OTN layer 

management network 

North API 

SDN controller 

 

OLM 
 

Topology 
management 

NETCONF 

 Transport PCE North Bound Interface is based on 
the API defined in Open ROADM service model 

– Service interface is based on RESTCONF (RFC8040) as stated in the 
OR Service White paper 

– RESTCONF protocol allows interrogating elements on their state 
using procedures based on http primitives  

– It uses POST, GET, PUT, DELETE… HTTP methods  to provide CRUD 
(create, read, update, delete) operations on a conceptual Data Store 
containing YANG-defined data 

 

 

– Open ROADM  service model defines Remote Procedure Calls (RPCs).  

• service create/delete, service-restoration, service-reversion 

• service-roll, service-reconfigure, service-reroute,  

• service-feasibility-check (-bulk) 

– …. and notifications 

 transport PCE also defines its own APIs  
• Service-path (1.6) model 



7 Transport PCE tutorial,  May 2019 

transportPCE main modules 

 Service Handler : handles request from Northbound API (service create, delete…), interrogates PCE for 
path calculation and calls Renderer and OLM for path implementation 

 Path Calculation Engine : calculates path from A to Z according to existing topology 

 Topology management : build and manage topology  

 Node discovery based on NETCONF Open ROADM equipment connection/disconnections  

 Link discovery based on lldp 

 Renderer : configures connections and interfaces in the different nodes 

 OLM : sets power levels in the different nodes 

 Device Management :  

 Alarms and Performance Monitoring management : store PMs and alarms in a specific Database (to be developed) 

 Device inventory : stores nodes main information (Circuit packs, ports…) in a specific Database 

 Configuration Management : manages configurations for the different nodes (to be developed) 



8 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

Topology management 
              

 1  Netconf details are provided to the network controller to reach a network element 

 As soon as Netconf nodes are in the Netconf topology of the controller, node discovery 
and Open ROADM  topology building is based on equipment connection/disconnections  

 Link discovery is based on lldp 

– Each nodes knows its lldp neighbors 

 

Topology 
Management 

2 as soon a NE is registered in the Netconf topology  tPCE has all information to reach 
the node 

3  A Netconf session is established  and the node announces its capabilities 

4  Node is added to the Open ROADM (I2RS compliant) topology  



9 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

Service Handler 
              

 Port mapping module of the Service Handler builds the mapping between physical elements as 
described in the Open ROADM service-model and abstracted elements used in the topology and 
in the path description of transport PCE service-path model 

 

 Service  
 Handler 

 
 

Port 
Mapping 

 

Topology 
Management 

    Service (Open ROADM)  
    |     +--rw topology 
    |     |  +--rw aToZ* [id] : List of resources used on the path from A to Z 

                           circuit-pack/port/connection/physical-link/internal-link/shelf/ 

                           srg/degree/service/interface/odu-sncp-pg/node-id/amplifier/ 

                           xponder/other-resource/versionned-service/temp-service 

    |     |  +--rw zToA* [id] : List of resources used on the path from A to Z 

 …. List of ressources described as for Z to A path  

     

Service-path   (transportPCE) 
   |   path-description 

     |     +--rw aToZ-direction 

    |     |  +--aToZ-wavelength-number 

    |     |  +--rw rate  

    |     |  +--rw modulation-format 

    |     |  +--rw aToZ* [id] : List of abstracted resources  

    |     |  |  +--rw id              string 

    |     |  |  +--rw resource 

    |     |              tp-id, tp-node-id; node-id; link-id  

     |     +--rw zToA-direction …. 



10 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

Service Handler 
              

SH Manages service handling request coming from the North RESTCONF API 

 Service creation, deletion, restoration, reconfiguration and rerouting… 

1  Service handler Receives request from north API, checks 
feasibility and asks for path computation through PCE,  

 2  Sends to Renderer service 
implementation requests 

 …N  Service Handler receives 
notifications from Renderer when 
connection is established and 
power level set on the interfaces 

  N+1  Service Handler Populates and refreshes service list according to 
service status after transmission quality has been checked 

 

Path Calculation 
Engine 

 
OLM 

 

Renderer 

 
 Service  
 handler 
 



11 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

PCE 
              

The following constraints are handled in the latest version of tpce 

     General constraints: exclude Node/SRLG, maximum latency 

     Diversity constraints: with respect to the path(s) of a specific service or a list of service 

 

The PCE receives from service handler request for path computation, or service feasibility check 

 
 Path Calculation 

Engine 
 

Topology 
Management 

Service handler 

• PCE, the Path Calculation Engine, is responsible for 
calculating the best path from Service A end to Z end, 
considering specific routing constraints  

 WDM infrastructure implies Impairment aware path calculation 

– Current calculations based on Open ROADM specifications 

 Calculates the path according to the topology information 
available in ODL DataStore 

– handling hop-count and latency metrics 

 Sends back the result of the path computation  including path 
description 

•   

  

 



12 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

Renderer 
              

The Renderer configures the service path through the different network elements 

 Handles interfaces & connection creation and deletion 

 1   Receives Service implementation requests from service handler 

 
Service  
Handler 

 

 

  Renderer 
 

Openroadm 
Equipment 

Netconf API 

 2 Configures all 
equipment of the service 
path through Netconf 
Interface 



13 Transport PCE tutorial,  May 2019 

LOCATION-A-RDM001 

DEG1 

DEG2 

SRG2 

SRG1 

DEG1-TTP-TXRX  
Logical Connection Point  
Allocated to physical port E1 
over Circuit-Pack 1/0 

PP1-TXRX Logical Connection Point 
Allocated to a Physical Port N over a specific circuit pack 

CTP 

CP 

Optical 
Line 

XPDR 

<roadm-connection> 

• On DEG1-TTP-TXRX 
• Create OTS interface if does not exist 
• Create OMS interface if does not exist 
• Create Och interface 

• On PP1-TXRX 
• Create Och interface 

• On LOCATION-A-RDM001 
• Create <roadm-connection> between 

Och interfaces 

LOCATION-A-XPDR001 

XPDR-CLIENT1 Logical Connection Point allocated to a physical port N  
over a specific Circuit-Pack 1-1-4 (client pluggable module) 

SRG 

1-1-4 

XPDR-NETWORK1 Logical Connection Point  allocated to physical port a physical 
port M  over another specific Circuit-Pack 1-1-3 (network pluggable module) 

1-1-3 

1-1-2 1-1-1 

Client  
equipment 

• On XPDR-NETWORK1 
• Create Och interface 
• Create OTU interface 
• Create ODU interface 

• On XPDR-CLIENT1 
• Create 100G Ethernet interface 

Rendering tasks performed during service creation :  
 Example of a  100Gbps wavelength (OCH channel) creation 



14 Transport PCE tutorial,  May 2019 

MD-SAL Data Store 

Service handler 

Path Calculation 
Engine 

Renderer 

Path calculation 
Policy repository 

Devices 

Topology 

Services 

WDM layer 

OTN layer 

management network 

Device management 
 
 
 

ODL Network controller 

North API 

Topology 
management 

database 
management 

startup / 
running) 

software Discovery  
initialization 

OLM* 

OLM : Optical Line management module 
              

OLM is responsible for setting and controlling optical power levels 

  After interfaces & connection are created, OLM manages power 
settings of the different optical elements 

 3 Renderer sends notifications to 
Service Handler when connection is 
established and power levels are set 

 
Service  
Handler 

 

 

 Renderer 
 

Openroadm 
Equipment 

Netconf API 

 2  OLM Sets power 
levels and connection 
optical attributes along 
the path through 
Equipment Netconf API  

 

OLM 
 

  1  As Renderer Calls OLM for power settings and adjustment 

 4 After interfaces, connections & power levels has been configured on the NEs, 
the renderer launches BER tests to check transmission quality in both directions 



15 Transport PCE tutorial,  May 2019 

 Most of the bricks defined in the 
controller architecture are available 

 Junit and functional tests have been 
developed  for the available modules 
– Allows checking code robustness 

– Needed for integration in ODL 

– Continuous integration eases collaboration 
between contributors in different countries, 
entities & companies 

 Transport PCE code now available as  an 
ODL Fluorine Artifact  

 

Transport PCE : where are we today ? 

Integrated as an ODL 
Fluorine Artifact 



16 Transport PCE tutorial,  May 2019 

  Added in Neon ODL Release 
 

• The main features added in Neon release are the following 

 Add support for notification in RPC handling 
 Extension of the coverage for OpenROADM Service RPC handling: service-reroute, service-

restoration, temp-service-create/delete 
 Impairment aware path calculation in PCE (OSNR calculation) 
 Management of unidirectional ports in path calculation and path configuration 
 ROADM to ROADM service creation, for resource reservation when transponders are not present 
 Introduction of transportpce-service-path 1.6 
 Device version management (up to release 2.2.1) 



17 Transport PCE tutorial,  May 2019 

 

 

Coming soon… interconnection to GNPY  
 Focus on GNPY interconnection 

– We plan to use GNPY tool as an external PCE with the capability to handle bookended 
transponders, low noise amplifiers, and high rate transponders in the future 

– GNPY, a project of the OOPT/PSE working group of the TIP is an open-source, 
community-developed library for building route planning and optimization tools in 
real-world mesh optical networks.  

– It uses complex algorithm and will be maintained to include additional features 
(Raman Amp is an example) 

– We are currently exporting topology and providing the results of a path computation 
performed by the PCE to GNPY tool 

– Path computed by tpce is converted to routing constraints  

– GNPY returns the result of the performance evaluation on the path 

– feasible or not, evaluated OSNR value 

Physical 
Simulation 

environment 
(GNPY) 

Network planner 

Engineering 
Data  Service handler 

Path Calculation 
Engine 

North API 

 Complement interconnection with GNPY tool: 
– Manage cases where path provided by PCE is not valid in terms of performances  

– Crank back  GNPY proposes a new valid path which does not follow the same route as the original path 
computed by PCE, but  respects original routing constraints provided in service-create  PCE checks path 
conformance with initial constraints  



18 Transport PCE tutorial,  May 2019 

 

 

Mid Term forecasted developments 

 Main priority for mid term developments is Service Assurance 

– Today, if we handle service creation and deletion, service health is not monitored, meaning that the controller is not able to 
trigger corrective actions in case of failures or degradation of the service quality. 

 OTN is also identified as a high priority development 

– Current implementation provides service handling for the WDM layer. OTN services can not be provisioned 

– Performance monitoring and associated proactive service maintenance could be developed in a second step 

 FLEXGRID and higher rates 

– As per today, if NMC and MC have been introduced with Device 2.2.1 version management, the controller still manage 
service creation according to a fix grid  

– The target is to handle services of 100G and beyond according to a flexgrid 

 PCE enhancement 

– Complement constraints handling : soft, co-routing/include  constraints  

– Complement the set of metrics handled by the PCE : distance, load, TE metric… 

 

 



19 Transport PCE tutorial,  May 2019 

  Continuous integration and deployment (CICD) 
 Contributors to transportPCE are located in different countries and belong to different companies or 

different entities in the same company 

• Some of the contributors can test their code on equipment platforms, some others not 

• Platforms do not include the same equipment /releases 

 Therefore, a set of common tools that can be used by any of the contributors to test the code they push 
and verify it does not introduce regressions is absolutely needed 

 Unitary tests allow checking code implementation / semantic 

 Functional tests allow extending the scope of testing and test functions implemented  

 – They are developed using tools from other projects 

 ODL Netconf Testtool  
– suffers from limitations : no possibility to write and modify configurations 

 fd.io Honeycomb project  
– Can easily be customized 
– Development of HoneyNode used for functional tests 
– Allows handling configuration and operational Data Stores 

 Xtesting is used to customize the test environment (Docker, minions, Jenkins, etc...),  

– Offload functional tests outside the integration framework with a bot accounting with -
1/0/+1 verified privilege, and a gerrit-stream events connection  



20 Transport PCE tutorial,  May 2019 

 For more information :  
– General information on the project : transportPCE wiki: 

–  https://wiki.opendaylight.org/view/TransportPCE:Main   

– still under work , thanks for your comprehension! 

– Documentation :  

– https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html 
https://docs.opendaylight.org/projects/transportpce/en/latest/   

– User guide 

– Development guide 

 

– Last code available on Gerrit :  

– https://git.opendaylight.org/gerrit/#/q/project:transportpce  

 

Thank You 

 

– Planned developments, bug tracking : 
https://jira.opendaylight.org/secure/RapidBoard.js
pa?rapidView=62&projectKey=TRNSPRTPCE 

https://wiki.opendaylight.org/view/TransportPCE:Main
https://wiki.opendaylight.org/view/TransportPCE:Main
https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html
https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html
https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html
https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html
https://docs.opendaylight.org/projects/transportpce/en/stable-fluorine/index.html
https://docs.opendaylight.org/projects/transportpce/en/latest/
https://docs.opendaylight.org/projects/transportpce/en/latest/
https://docs.opendaylight.org/projects/transportpce/en/latest/
https://git.opendaylight.org/gerrit/#/q/project:transportpce
https://git.opendaylight.org/gerrit/#/q/project:transportpce
https://git.opendaylight.org/gerrit/#/q/project:transportpce
https://jira.opendaylight.org/secure/RapidBoard.jspa?rapidView=62&projectKey=TRNSPRTPCE
https://jira.opendaylight.org/secure/RapidBoard.jspa?rapidView=62&projectKey=TRNSPRTPCE

