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A. Preamble 

It is well-known that urban areas, depending on extents and physical / geometrical characteristics, create 

distinct climates and intra-urban microclimate variabilities that are typically very significant and 

sometimes of the same magnitude as inter-regional differences in climate (Taha 2017, 2015a,b, 2020a,b). 

These intra-urban variations can significantly affect energy use, thermal environmental conditions, heat-

health, emissions, and air quality (Taha 2017). Translating climate effects into energy-use equivalents and 

developing weather files to account for these effects is an on-going endeavor pursued across the industry, 

research, and academic spectrum, e.g., Crawley (2007); Huang (2010, 2016); Hong et al. (2016, 2017); 

Dickinson and Brannon (2016); Bueno et al. (2011); Jentsch et al. (2015); New et al. (2018); Nair et al. 

(2020); and Mylona et al. (2012), among others.  

Accurate, site-specific microclimate characterizations are critical in the design of new buildings or 

retrofits; in building code or certification compliance; in testing building performance under a range of 

weather conditions; and in deploying energy technologies that will be equally effective in current and 

changing climates (Herrera et al. 2017; Alfaro et al. 2004; Taha 2015a,b; de Wilde and Coley 2012). 

Currently, however, most weather input to building energy models does not explicitly take into account 

the effects of such fine-scale intra-urban variations or the specific micrometeorological fields at a site of 

interest. 

Existing climate zones are also generally coarse, regardless of the application, e.g., energy, public health, 

or emissions / air-quality, since they are based mostly on airport weather data, despite recent increases in 

observations from mesonets and urbanets. By comparison, significant intra-urban variability in 

microclimates occurs at much finer scales, e.g., sub-kilometer and sub-hourly (Taha 2008a,b,c, 2017; 

Taha et al. 2018a,b). For example, Taha (2020a) shows that the current California Building Climate 

Zones (BCZ) are too coarse and that intra-urban variability in microclimates can be so large that it is 

possible in effect to create within each BCZ a number of temperature subzones (e.g., ~5 km length scales) 

with intra-zone temperature gradients similar to or larger than the inter-zone gradients of the coarse BCZ 

sometimes by several folds (Figure 1). 

  

Figure 1: Los Angeles region fine-scale 

temperature zones (color-coded) produced 

by Altostratus Inc. (Taha 2020a) vs. 

California Building Climate Zones (BCZ), 

numbered. In this example, the Altostratus 

zones are based on synthetic observational 

August (2013-2015); each step change in 

color is 1.2 °C.  
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Figure 2: Development of characteristic temperature 

zone from N initial zones, e.g., N-member ensemble 

or N years, etc. In this example, N = 3 (source: Taha 

2020a) 

For current climate, Altostratus Inc. develops these probabilistic fine-scale intra-urban microclimate 

zones based on both observations (from mesonet and urbanet) and high-resolution atmospheric model 

fields. For future climates, the microclimate zones are developed based on dynamically-downscaled 

climate fields that are locally enhanced with the Altostratus-modified uWRF model (discussed below). In 

both cases, a clustering technique (Taha 2020a) is used to create zones based on their spatial properties, 

extents, and persistence across specified time 

intervals (e.g., a specific month across N years) or 

ensembles of N simulation members, etc. For each 

area, a length scale analysis is applied for every 

desired period and scenario creating a union of N 

initial zones (at each location) that are 

superimposed (Figure 2, is an example where N = 

3). These N initial zones vary spatially across the 

months, years, or scenarios. With spatial analysis 

and pattern recognition (GIS), these initial zones 

can then be decomposed into persistent 

(intersection of all N initial zones), semi-persistent 

(n intersections, where n < N), and inconsistent 

initial zones (no intersections) (Taha 2020a). 

The union and intersection processes to generate a 

characteristic zone are explained schematically in 

Figure 2, using three hypothetical initial zones A, 

B, and C, in this example. In this figure, the union of initial subzones is delineated with the black dashed 

line. Thus, in this case, with N = 3, the resulting final zone is defined as: 

               [ A  Ո  B  Ո  C ]  + A Ո B (1) + C Ո B (1) + A Ո B (2) + A Ո C (1) + A Ո B (3) + C Ո B (2) + A Ո C (2) 

The first term (in brackets) represents the hatched area (in Figure 2), which is the equivalent of what was 

defined above as a “persistent” initial zones, and the remaining seven terms of the equation represent the 

individual brown-colored parcels surrounding the hatched area (in this example, clockwise from top 

right). Thus, the final probabilistic zone is delineated with the dashed brown line (intersection of N = 2) 

and is shown in brown (including both the brown hatch area and non-hatch brown area). This process is 

repeated for all locations in an area of interest (e.g., Figure 1) where the length scale analysis is carried 

out and for all regions and time periods (and scenarios) in current and future climates.  

These issues also pertain to the evaluation of future climate effects on energy use, e.g., heat exacerbation 

and weather patterns (Fann et al. 2016; Houghton and English 2014; Taha 2017, 2020a,b). As urban areas 

exacerbate regional warming (Taha 2017; Founda and Santamouris 2017), there is an increased emphasis 

on the need to account for fine-scale climate variations within urban areas and consider these issues as 

priority research in developing projections of future climate impacts (Hess et al. 2018; Ebi et al. 2018; 

Cheng and Berry 2013). This is one reason why the changes in climate zones (under future climate and 

land-use conditions) also need to be characterized. 

 

B. Weather products 

For various applications, Altostratus Inc. has been developing methodologies to create high-resolution 

meso-urban weather data based on advanced, fine-scale urbanized atmospheric modeling and 

observations. Altostratus can create site-specific weather files for any location under current and future 

climates and their corresponding urbanization levels and land-use characteristics. The simulations are 
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carried out specifically and explicitly for the desired site, not merely extracting model output at specified 

locations as a post-processing step. 

For energy applications, Altostratus applies state-of-science methodologies, datasets, and advanced 

atmospheric models to create (1) fine-scale probabilistic microclimate zones (as shown in Figure 1, for 

example) and (2) site-specific weather data for energy forecasting, planning, and analysis. Based on 

meteorology and land-use characteristics, each microclimate zone’s spatial extents (length scales) are 

dynamically determined. The fine-scale microclimate zones also vary in spatial extents and properties, 

e.g., on a decadal time scale, to capture effects of changes in climate and emissions (RCP), land use, 

surface physical properties, emissions and exacerbation of heat, implementation of control measures and 

policies, deployment of renewable energy technologies, and fleet electrification. Thus, sets of 

microclimate zones are developed to reflect various possible scenarios.  

Enhanced site specificity of weather files, e.g., for a particular building location, is achieved with 

modeling at resolutions of 200 m and finer while accounting for (1) the effects of the site’s urban 

morphometric characteristics, land cover, surface physical properties, and sources of heat, (2) effects of 

physical properties of the site’s surroundings, and (3) characteristics of upwind areas within 

meteorological radii of influence, i.e., per dynamically-determined, wind-direction-dependent, time-

varying length scales. The methodology is fully site-specific based on in-situ bottom-up surface and 

canopy-layer characterizations, advanced urban parameterizations, fine-scale prognostic modeling 

including observational data assimilation and variational analysis, bias-corrected dynamical downscaling 

of climate models (for future years), and physical characterizations of projected urbanization 

corresponding to the downscaled future timeframes of interest.  

 

C. Model performance evaluation 

An important aspect in these activities is to thoroughly demonstrate model performance following any 

meteorological-model update, customization, and modification. Over the years, Altostratus has provided a 

detailed summary of model performance that accompanies each study and project report to ensure full 

acceptability of results. Model performance is compared against community-recommended benchmarks 

(e.g., Emery et al. 1997; Tesche et al. 2001; Taha 2017) at each weather station in the domain of interest. 

Rigorous statistical performance evaluation includes using metrics such as bias, gross error, root mean 

square error, index of agreement, time series, maxima / minima, and ranges as applicable to each variable 

such as temperature, relative humidity, wind speed, wind direction, heat and moisture fluxes, and others 

as needed. 

One such example is shown in Figure 3 depicting improved temperature forecast skill (model 

performance) in the Los Angeles and San Francisco Bay Area regions resulting from using the 

Altostratus-modified uWRF (Taha 2017, 2020a,b) relative to the standard WRF model (Section D.3). 

This example is from a study performed by Altostratus Inc. for the California energy commission (Taha 

2020a). For the random sample shown (July 16-31, 2013), model performance in the Los Angeles region 

improved significantly at 225 stations (green-coded circles) but worsened at 6 stations (red-coded circles). 

In the San Francisco Bay Area (SFBA), model performance improved significantly at 150 stations but 

worsened at 10 stations. The mean error was reduced by up to 1.8 °C (46%) in SFBA and up to 0.8 °C 

(33%) in the Los Angeles region. Furthermore, Taha (2017, 2020a,b) and Taha et al. (2018a,b) showed 

that the Altostratus Inc. modifications in uWRF significantly improved performance not only with respect 

to standard, non-urban WRF, but also with respect to the standard WRF-urban model (Chen et al. 2010).  
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Figure 4: Forecast 2-m air 

temperature for 2000 PDT, March 

16, 2020 (produced by Altostratus 

Inc.-modified uWRF). Circles are 

locations of mesonet stations. 

 

                         

 

D. Methodology 

In the following sections, a very brief, high-level overview of the methodology in the context of an 

example domain (Sacramento Valley, California) is presented. This is a domain for which a number of 

weather files are made available for evaluation. To conserve space in this short article, references to some 

data sources are not provided in the discussion items below – they can be made available upon request. 

The end product of the approach discussed here is to develop 

modified meteorological fields input to the EnergyPlus program 

(Crawley et al. 2001), but of course can be used with any other 

building energy model. 

D.1 Observational weather analysis 

Altostratus obtains hourly and sub-hourly observational weather data 

from the MADIS system and other sources, if needed, including: 

Urbanet; National Weather Service Coop; WeatherBug; NOAA 

MesoWest; NCAR datasets; California Irrigation Management 

Information System (CIMIS); and network-specific California 

datasets, e.g., ARB and AQMDs. Hourly data from weather-station 

networks (e.g., white circles in Figure 4 for the Sacramento area) are 

used in: (1) characterizing the current intra-urban microclimate 

variations, albeit at coarser resolutions than is possible with the 

atmospheric model, (2) developing microclimate zones in the 

selected regions (as discussed in Section A), which also guides the 

modeling effort, (3) developing the reference benchmarks for subsequent use in model performance 

evaluation, and (4) developing the input to 4-dimensional data assimilation schemes in the meteorological 

model. 

D.2 Land use / land cover (LULC) and surface characterization 

Detailed LULC analysis is done to supplement other data sources and derive / develop surface physical 

properties input to the meteorological / land-surface models. A detailed, area-specific, bottom-up 

approach (Taha 2008b, 2017, 2020a,b; Taha et al. 2018a) is used to characterize the physical and 

geometrical properties of the surface, especially in urban areas, based on data sources including: 30-m 

National Land Cover Data and impervious cover; 30-m USGS Anderson Level-II and Level-IV land use; 

Google Earth PRO urban morphological and land-cover data; 1-m aerial imagery-based roof and 

Figure 3: Los Angeles region (L) and San Francisco Bay Area (R) mesonet stations (circles) and current BCZ 

boundaries (yellow lines). The circles are color-coded to indicate improvements in model performance with the 

Altostratus-modified uWRF at each station relative to the standard WRF modeling approach. The squares are 

metars and existing weather-file locations (EPW). Source: Taha (2020a). 
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pavement albedo; 1-m area-specific LiDAR-derived urban morphological and geometrical data (including 

N/WUDAPT); 1-m EarthDefine/CALFIRE urban tree canopy cover; and 30-m MRLC / USFS canopy 

cover and MODIS albedo. 

Taha (2008a,b,c, 2017, 2020a,b) developed a methodology to derive area- and site-specific urban 

morphometric, geometrical, and surface physical properties from Google Earth PRO in conjunction with 

other sources of LiDAR data. As shown in Figure 5A,B, for example, this information is converted from 

Google Earth PRO (5B) into various parameters for each model computational volume (5A) in the canopy 

and boundary layers. 

 

      

For future years, e.g., through 2100, several LULC-projection datasets exist, including the USGS Land 

Use and Carbon Scenario Simulator (LUCAS) (Sleeter et al. 2017a,b). Altostratus has vectorized and 

used the LUCAS data to develop future-year projections (e.g., for year 2050, as in Figure 5C) and 

characterize urbanization changes to derive surface physical properties. In this context, Taha (2017, 

2020a,b) developed a methodology to extrapolate the current LULC makeup and surface physical 

properties near the growth boundaries to nearby future urbanizing areas. These characterizations are also 

subsequently used in dynamical downscaling of climate models.  

D.3 Atmospheric modeling of current climate and land use 

For the purpose of urban atmospheric modeling, several mesoscale meteorological models, such as the 

Weather Research & Forecasting model, WRF (Skamarock et al. 2008) have been enhanced with urban 

parameterizations that improve the representation and quantification of urban canopy- and boundary-layer 

processes and more accurately quantify the urban influences on the atmosphere (Martilli et al. 2002; Chen 

et al. 2010; Salamanca and Martilli 2009; Kusaka et al. 2001; Taha 2008a,b,c; Fan and Sailor 2005).  

At Altostratus Inc., Taha (2008a,b,c, 2015a,b, 2017, 2020a,b) has further refined the WRF urban 

parameterizations and their applications and developed more advanced techniques and a modified version 

of the urban WRF model (referred to as “uWRF” in this article). The refinements allow for very fine-scale 

specification of surface physical properties in the model, ability to characterize the 3-dimensional 

properties of urban areas in detail (e.g., down to street scale), and an accurate quantification of the sources 

of heat in each area, all of which improves the model’s calculations of various prognostic variables. The 

refinements also improve upon existing urban surface-characterization techniques, such as WUDAPT 

(Ching et al. 2009), in that each grid cell in the domain can be independently and directly characterized 

based on remote-sensed information and ground-based surveys (e.g., Taha et al. 2018a,b) instead of using 

land-use as a generic proxy, which is the current approach. The urban canopy-layer models in WRF are 

also modified and improved by Taha (1999, 2017, 2020a,b) including how the urban parameterizations 

are called (triggered) per physics criteria (applied independently at each grid cell), including turbulent 

kinetic energy, heat storage, anthropogenic heat emissions, and urban morphology, thereby replacing the 

C

Figure 5: A: High-resolution vertical levels (2 – 5 m) in the urban canopy model.  B: Characterization of 3-D 

urban morphology in Google Earth PRO. C: Current urban areas (green) and projected urban growth by 2050 

(pink) in the greater Sacramento Valley, California, region (Taha 2020b). 



  

                        Site-specific weather files and fine-scale microclimate zones    |    6 
 

existing approach which is based on land-use type. All of these improvements help achieve more accurate 

location-specific microclimate simulations and, thus, more accurate quantification of the effects of intra-

urban variability in climate and surface physical properties on energy use. 

For current climate, reanalysis is used to provide boundary conditions to the meteorological model. 

Observations from mesonet and metar are also assimilated into the model. Both deterministic and 

probabilistic (e.g., ensemble) simulations are carried out. 

D.4 Atmospheric modeling of future climates and land use 

The local future microclimates (e.g., for the example domain) are characterized via (1) dynamically-

downscaling a bias-corrected CMIP5 model -- CCSM4, Community Climate System Model (Bruyere et 

al. 2014; NOAA 2015) and (2) highly-urbanized meteorological modeling at the sub-kilometer and sub-

hourly scales using the Altostratus-modified uWRF (Taha 2008a,b; Taha 2017). Future years, RCP 

scenarios, and future land-use projections are modeled to develop an ensemble of simulations that 

captures potential local impacts of future climate and develop probabilistic microclimate zones and future 

site-specific forecasts. 

The development of future microclimate zones does not only account for the effects of changes in climate 

(via dynamical downscaling) but also (1) changes in land use / urbanization, (2) changes in heat and 

pollutant emissions and impacts on radiative forcing, and (3) implementation of selected regional 

measures and policies including solar PV, cool communities, fleet electrification, and distributed 

generation and renewables.  

 

E. Example geographical domain and sample weather files 

The example domain (greater Sacramento Valley, California), is shown in Figure 6A (red rectangle) and 

magnified in Figures 6B, 6C. The central part of this domain is relatively homogeneous, mostly flat with 

no major water bodies, devoid of abrupt topographical features, except for the gradual upslope towards 

higher elevations near the eastern edge of the domain. Thus the bulk of intra-urban microclimate 

variations are caused by changes in surface characteristics and heat transport along the air-mass 

trajectories over urban areas (Figure 6C) (Taha 2020b). 

In the following discussion, two random urban locations are compared to Sacramento Executive airport 

(hereafter called “EXEC” for short) which is the source of TMY3 data in an existing weather file. The 

two locations are: 

1. An AB-617 community “B”, one of ten disadvantaged areas identified by the Sacramento 

Metropolitan Air Quality Management District (SMAQMD). This will be referred to as “AB” in 

the following discussion and is 12 km NNE of EXEC. It is identified with a green circle in Figure 

6B, 6C. 

2. A location in the City of Citrus Heights, referred to as “CTRS” in this discussion, and is 25 km 

NE of EXEC. It is identified with a yellow circle in Figure 6B, 6C. 

For the whole region, there are only two weather files (TMY#) currently in use: one at Sacramento Metro 

AP and one at Sacramento Executive AP (two red circles in Figure 6B). The white circles are random 

urban locations for which Altostratus generated sample weather files for current and future climates and 

land use. The files are currently *.csv-formatted for EnergyPlus (*.epw) and the file names are listed 

along with the locations in Figure 6B (zooming on the figure is necessary to see the file names).  

The sample weather files are for years 2019 and 2050 (RCP 8.5). Using the same methodology described 

in Section D, Altostratus can generate weather files for any location worldwide and any time horizon 

(past, current, and future) per a user’s interest. The future-climate scenarios produced by Altostratus, such 
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as the 2050 RCP 8.5 samples provided here, also account for the effects of changes in land use and land 

cover, and urbanization tendencies (projected) by the year 2050, not just the changes in climate. 

In order to provide the user with different options for applying the fine-scale model and observational 

weather data (for both current and future climates), the products are made available as: 

Option 1: Model perturbations applied to current weather files (TMY / EPW for example) via departures 

from monthly means (indirect mapping) or hour-to-hour departures (direct mapping). This results in 

synthetic weather files, meaning that they are modifications to current TMY data. Conceptually, for a 

variable V, this can be described as: 

𝑉𝑇𝑀𝑌  =   𝑉𝑇𝑀𝑌  +   𝑉𝑇𝑀𝑌 
′  ;        𝑉𝑢𝑊𝑅𝐹  =   𝑉𝑢𝑊𝑅𝐹  +   𝑉𝑢𝑊𝑅𝐹

′   ;       𝒂𝒏𝒅:     𝑉𝐶  =   𝑉𝑇𝑀𝑌  +   𝑉𝑢𝑊𝑅𝐹
′  

where Vc is the desired computed value of the variable (the equations are generic, i.e., they can be 

applied in space or in time, as well as both simultaneously). This option allows users of existing 

weather data (e.g., TMY) to directly evaluate the improvements in and intra-urban spatiotemporal 

enhancements to meteorological fields in TMY (resulting from the Altostratus methodology) in a 

region of interest and to directly compare them to the existing weather files; 

Option 2: Model perturbations applied to observational data from metar and other high-quality weather 

stations, e.g., from NOAA. This no longer produces a synthetic weather file as compared to option 1 

and is more realistic because the observations come not from a composite weather file (e.g., TMY) 

but, rather, from dynamically-consistent hourly and sub-hourly observations for a specific time 

interval, e.g., a full year; and 

Option 3: Absolute model fields (whether deterministic or probabilistic) at any and all locations of 

interest for the desired periods. In this case, the fields are absolute, dynamically consistent, and no 

longer based on departures from some spatial or temporal means, such as from existing weather files. 

In all options, the modified variables of most relevance to the EnergyPlus program (Crawley et al. 2001) 

are DBT, DEW, RH, SW, DIFF, LW, and WSP, discussed further below and defined in Figure 9. 

Option 3 is the most correct, scientifically-sound approach, and the one recommended for use. However, 

all three options can be made available to interested parties if so desired. Although rarely the case, option 

1 can result in unrealistic values at times. For example, in the sample data provided and discussed below, 

this option can produce temperatures in 2050 RCP 8.5 that reach 50 °C during a few hours in the year 

(outliers). In the datasets discussed below, examples from options 1 and 3 are provided. 

For parties interested in testing sample weather data, Altostratus is making available fine-scale weather 

files for current and future climates. These samples are currently for the Sacramento Valley, California 

(Capital region), for the locations shown in Figure 6B, and can be accessed via ftp. If interested in 

obtaining test weather files or in generating weather data for other time periods, regions, specific 

communities, selected neighborhoods, or specific building sites, Altostratus can provide additional 

information. 

In the following discussion, locations EXEC, AB, and CTRS are compared. As space is limited in this 

short article, only air temperature comparisons are shown in somewhat larger graphics in Figure 7 and 

summarized with additional information in Figure 8. For other variables, postage-stamp graphs are shown 

in Figure 9 to provide a general idea. In all graphs, the red ellipses represent the bivariate normal density, 

provided here merely as a visual aid to discern outliers or extreme values in the data from 8760 hours, in 

respective years, and the red line is the identity line. 

In general, the graphs in Figures 7, 8, and 9 can be grouped into two sets: (1) those representing spatial 

comparisons, i.e., comparing variables at different locations but for the same timestamps and (2) those 

representing temporal comparisons at different timestamps (e.g., across different years) but at the same 

respective locations. Thus one observation that can be made is that the spatial comparisons (graphs A1, 
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A2, D1, and D2 in Figure 67 and rows R1, R2, R7, and R8 in Figure 9) have a smaller scatter than the 

temporal comparisons. This is expected since the spatial variations during a timestamp over relatively 

small distances are likely smaller than comparing, say, a certain hour in current and future climates. 

Graphs A1 and A2 (in Figure 7) are from option 1 (for current climate, 2019) and show dry-bulb 

temperature increasing away from EXEC location because of intra-urban heat transport (as explained by 

the trajectories in Figure 6C). Because of that, AB has a net increase of 5190 °C·hr yr
-1

 relative to EXEC, 

whereas CTRS has a net increase of 8157 °C·hr yr
-1

 relative to EXEC. The annual all-hours temperature 

average at EXEC, AB, and CTRS are 15.55, 16.14, and 16.48 °C (Figure 8). Thus, over a relatively short 

distance between these stations, an annual-average 1 °C difference can result because of intra-urban 

microclimate effects, which is very significant. The largest increases in temperature relative to EXEC 

occur during the mid-ranges of absolute temperature and can be as much 4 °C warmer in AB and up to 6 

°C warmer in CTRS at any given hour within that temperature range. This can also be seen in graphs A1 

and A2 (entasis) as well as in the upward shift of the interquartile ranges seen in Figure 8, A1 and A2, 

where the 1
st
 quartile is relatively unchanged but the 3

rd
 quartile is higher. 

 

  

Graphs B1, B2, ad B3 (in Figure 7) are spatial comparisons based on option 1, but for the year 2050 (RCP 

8.5). Thus, B1 is EXEC in 2050 relative to TMY3, B2 is AB in 2050 vs. AB in 2019, and B3 is CTRS in 

2050 relative to CTRS in 2019. The net warming (from 2019 to 2050) at EXEC is 8649 °C·hr yr
-1

 (or 0.99 

°C·hr hr
-1

), at AB the net warming is 9187 °C·hr yr
-1

 (or 1.05 °C·hr hr
-1

), and at CTRS, it is 10321 °C·hr 

yr
-1

 (or 1.18 °C·hr hr
-1

). Indeed, the climate-model fields downscaled via Altostratus uWRF suggest that 

the warming (relative to present conditions) increases in the NNE and NE directions in this region. This 

can also be seen in differences B1, B2, and B3 in Figure 8. 

Graph C1 (in Figure 7) is a temporal comparison between absolute model fields at EXEC in 2019 vs. 

TMY3. That is, the graph shows hour-to-hour comparisons between the model’s absolute output for year 

2019 versus TMY3 at EXEC, hence the relatively large scatter. The model year 2019 shows a net 

warming (relative to TMY3) of 8722 °C·hr yr
-1

 (or almost 1.0 °C·hr hr
-1

 as an annual average – also see 

difference C1 in Figure 8). The next two graphs are spatial comparison at AB (D1) and CTRS (D2), 

relative to EXEC, all based on absolute meteorological model output for 2019. Thus this is a more 

dynamically-consistent set of data that can be inter-compared directly. In this case, AB sees a net 

warming of 5187 °C·hr yr
-1

 (or 0.59 °C·hr hr
-1

 over 8760 hours) relative to EXEC, whereas as CTRS sees 

 

           

Pacific Ocean

CA

NV

OR

Figure 4. Left: Sample domain (red). Middle: Locations of sample weather files available for testing. Red circles 

are existing TMY/TMY3 *EPW weather data for the region (Sacramento Metro and Sacramento Executive 

airports). White circles are locations of sample Altostratus Inc. weather files in urban areas. Green and yellow 

circles are AB and CTRS locations. Right: Back-trajectories arriving Rocklin area at 1400 PDT on 13 different 

days during the interval July 16 – 31, 2015. The “4” markers show the air mass position four hours prior to 

arriving at Rocklin (Taha 2020b). 

A B C

Figure 6. A: Sample domain (red rectangle). B: Locations of sample weather files available for testing. Red circles 

are existing TMY/TMY3 *EPW weather data for the region (Sacramento Metro and Sacramento Executive 

airports). White circles are locations of sample Altostratus Inc. weather files in urban areas. Green and yellow 

circles are AB and CTRS locations, respectively. C: Back-trajectories arriving Rocklin area at 1400 PDT on 13 

different days during the interval July 16 – 31, 2015. The “4” markers show the air-mass position four hours prior 

to arriving at Rocklin (Taha 2020b). Zooming into Figure B can help identify file names. 
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net warming of 8149 °C·hr yr
-1

 (or 0.93 °C·hr hr
-1

) relative to EXEC (also see Figure 8, differences D1 

and D2). 

Finally, graphs E1, E2, and E3 (Figure 7) show a comparison of year 2050 vs. 2019 at each respective 

location (EXEC, AB, and CTRS), all from model results (absolute fields, not perturbations). Thus, again, 

this is a dynamically-consistent set of variables that can be useful to compare. The differences at each 

location were already used above and mapped onto existing conditions to generate synthetic weather files, 

as seen in graphs B1, B2, and B3 (Figure7). Thus, these are again local net warmings of 0.99 °C·hr hr
-1

, 

1.05 °C·hr hr
-1

, and 1.18 °C·hr hr
-1

 at EXEC, AB, and CTRS, respectively, as annual averages (over 8760 

hours). The differences can also be seen in Figure 8 (E1, E2, and E3). 

In all of the above analysis, one should keep in mind that CTRS, relative to EXEC, is not even at the 

downwind-most end of the trajectories shown in Figure 6C.  Thus, for other locations further downwind, 

such as those to the N, NE, and E of CTRS (the yellow circle in Figure 6B,6C), the differences (i.e., 

warming) relative to EXEC are even larger.  

To wrap up this discussion, the absolute model fields for current climate (2019) and future year (2050) are 

compared with the TMY3 weather file for EXEC (Sacramento Executive Airport). This is to give the 

TMY3 user a sense of how different the building energy simulations and calculations could be if the 

actual 2019 year were used instead of the composite TMY3 and also how modeled future years compare 

to present. To do that, the last 6 datasets in Figure 8 are compared to TMY3 (the first dataset on the left in 

Figure 8).  

Relative to TMY3 (at EXEC), the 2019 all-hours average temperature at EXEC is 0.99 °C higher – at AB 

it is 1.58 °C higher (than TMY3) and at CTRS it is 1.92 °C higher (than TMY3). The 2050 all-hours 

averaged temperature at EXEC is 1.98 °C higher than TMY3, at AB it is 2.63 °C higher (than TMY3), 

and at CTRS, it is 3.10 °C higher (than TMY3). Since these are annual averaged differences (over 8760 

hours), they are quite significant. Finally, it can also be stated that the intra-urban differences in 

temperature, caused by urban heat transport along trajectories (Figure 6C) and local heat generation / 

surface properties, is of the same magnitude as the predicted local effects of climate change (in 2050, in 

this example). Spatially, in 2019, AB is warmer than EXEC by an annual average of 0.59 °C and CTRS is 

warmer than EXEC (in 2019) by an annual average of 0.93 °C (these spatial differences are based on 

model results). The changes in climate and land use produce a local warming of 1.05 °C at AB (in 2050 

relative to 2019) and a warming of 1.18 °C at CTRS (in 2050 relative to 2019). Thus comparing 0.59 °C 

(spatial) to 1.05 °C (climate) and 0.93 °C (spatial) to 1.18 °C (climate) shows that the spatial impacts of 

intra-urban microclimate variations are of the same magnitude as the local predicted impacts of climate 

change between now and 2050 (RCP 8.5). 

Of course, all of these comparisons and findings are specific to this region, selected locations, and years / 

scenarios. Other regions, time horizons, or scenarios, will likely yield different results. Hence, it is 

important to carry out the modeling and forecasting on an area- and site-specific basis, which is the main 

argument in the approach presented in this article. 

Finally, Figure 9 summarizes the same type of analysis but for other meteorological variables. In this 

figure, rows R1 through R11 are defined as follows (y-axis vs. x-axis):  

R1: AB vs. TMY3 (option 1); R2: CTRS vs. TMY3 (option 1); R3: EXEC 2050 vs. TMY3 (option 1); 

R4: AB 2050 vs. AB 2019 (option 1); R5: CTRS 2050 vs. CTRS 2019 (option 1); R6: EXEC 2019 vs. 

TMY3 (option 3); R7: AB 2019 vs. EXEC 2019 (option 3); R8: CTRS 2019 vs. EXEC 2019 (option 3); 

R9: EXEC 2050 vs. EXEC 2019 (option 3); R10: AB 2050 vs. AB 2019 (option 3); and R11: CTRS 2050 

vs. CTRS 2019 (option 3). The options were defined at the beginning of Section E. 

In this figure, DEW is in °C, DIFF, LW, and SW are in W m
-2

, RH is in %, and WSP is in m s
-1

. 
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Figure 7: Comparisons of various temperature indicators at EXEC, AB, and CTRS. 
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[ Figure 9 follows on page 12 ] 
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Figure 8: Descriptive statistics for 8760 hours of air temperature at EXEC, AB, and CTRS. At the bottom of the 

figure, differences are labeled for cross-referencing to graphs in Figure 7. 

DATA ACCESS AND DISCLAIMER 

The sample weather files for the Sacramento Valley, California, domain shown in Figure 6B can be 

obtained from Altostratus Inc. via FTP. Please contact us for access information. 

These weather files are made available for testing purposes only. They are not intended for 

commercial use or application to on-going projects. Altostratus Inc. is not responsible for any 

outcome resulting from use of these sample weather files. If interested in applying such data to on-

going projects or in creating new ones for your location, please contact Altostratus Inc. 

A “README” note is also provided on the FTP site with additional information on the files and their 

corresponding locations in the domain. 
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Figure 9: Selected comparisons among variables. DEW: dewpoint; DIFF: diffuse radiation; LW: longwave 

radiation from sky; RH: relative humidity; SW: direct normal radiation; WSP: wind speed. 
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